MATH 104 HW3

Jad Damaj

February, 112022

1 Hw 3

Exercise 1.1 (Ross 10.6).
(a) Let $\left(s_{n}\right)$ be a sequence such that

$$
\left|s_{n+1}-s_{n}\right|<s^{-n} \text { for all } n \in \mathbb{N} \text {. }
$$

Prove $\left(s_{n}\right)$ is a cauchy sequence and hence a convergent sequence.
(b) Is the result in (a) true if we only asssume $\left|s_{n+1}-s_{n}\right|<\frac{1}{n}$ for all $n \in \mathbb{N}$.

Proof.
(a) Note that $1+\frac{1}{2^{1}}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n}}=\frac{2^{n+1}-1}{2^{n}}$ and $\sum_{i=0}^{\infty} \frac{1}{2^{i}}=2$. Let $m, n \in \mathbb{N}$ be arbitrary and assume $m>n$. Observe that by repeated applications of the triangle inequality we have

$$
\begin{aligned}
\left|s_{m}-s_{n}\right| & \leq\left|s_{m}-s_{m-1}\right|+\cdots+\left|s_{n+1}-s_{n}\right| \\
& <2^{-m}+\cdots+2^{-n} \\
& <2-\frac{2^{n+1}-1}{2^{n}}=\frac{1}{2^{n}}
\end{aligned}
$$

So for $\varepsilon>0$, taking N such that $\frac{1}{2^{N}} \leq \varepsilon$ we see that $\left|s_{m}-s_{n}\right|<\varepsilon$ for all $n, m>N$. Thus the sequence is cauchy.
(b) The result in part (a) is not necessarily true if we use the bound $\frac{1}{n}$. This is because the sum $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge so summing up arbitrary many terms of the sequence is not bounded. This means we can construct a sequence that satisfies these requirements yet oscillates between 0 and $\frac{1}{2}$:

$$
0, \frac{1}{2}, \frac{1}{6}, \frac{-1}{12}, \frac{7}{60}, \frac{17}{60}, \ldots
$$

This sequence can continue to oscillate in this fashion since summing finitely many terms of the form $\frac{1}{n}$ can always accumulate to $\frac{1}{2}$.

Exercise 1.2 (Ross 11.2). Consider the sequences defined as follows:

$$
a_{n}=(-1)^{n}, \quad b_{n}=\frac{1}{n}, \quad c_{n}=n^{2}, \quad d_{n}=\frac{6 n+4}{7 n-3}
$$

(a) For each sequence, give an example of a monotone subsequence.
(b) For each sequence, give its set of subsequential limits.
(c) For each sequence, give its limsup and liminf.
(d) Which if the sequences converges? diverges to $+\infty$? diverges to $-\infty$?
(e) Which of the sequences is bounded?

Proof.

(a) $\left(a_{n_{k}}\right)=1,1,1,1, \ldots$ (even terms)
b_{n} itself is monotone decreasing c_{n} itself is monotone increasing d_{n} itself if monotone decreasing
(b) $S_{a}=\{1,-1\}, S_{b}=\{0\}, S_{c}=\{+\infty\}, S_{d}=\left\{\frac{6}{7}\right\}$
(c) $\limsup a_{n}=1, \lim \inf a_{n}=-1$
$\limsup b_{n}=\liminf b_{n}=0$
$\limsup c_{n}=\liminf c_{n}=+\infty$
$\limsup d_{n}=\liminf d_{n}=\frac{6}{7}$
(d) b_{n} and d_{n} converge. c_{n} diverges to $+\infty$.
(e) a_{n}, b_{n}, and c_{n} are bounded.

Exercise 1.3 (Ross 11.3). Repeat Exercise 11.2 for the sequences:

$$
s_{n}=\cos \left(\frac{n \pi}{3}\right), \quad t_{n}=\frac{3}{4 n+1}, \quad u_{n}=\left(-\frac{1}{2}\right)^{n}, \quad v_{n}=(-1)^{n}+\frac{1}{n}
$$

Proof.
(a) $\left(s_{n_{k}}\right)=1,1,1,1, \ldots($ every 6 th term $)$
t_{n} itself is monotone decreasing
$\left(u_{n_{k}}\right)=\left(\frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \ldots\right.$ (even terms)
$v_{n_{k}}=\left(1+\frac{1}{2}, 1+\frac{1}{4}, 1+\frac{1}{6}, \ldots\right)$ (even terms)
(b) $S_{s}=\left\{1, \frac{1}{2},-\frac{1}{2}, 1\right\}, S_{t}=\{0\}, S_{u}=\{0\}, S_{d}=\{1,-1\}$
(c) $\limsup s_{n}=1, \liminf s_{n}=-1$
$\limsup t_{n}=\liminf t_{n}=0$
$\limsup u_{n}=\liminf u_{n}=0$
$\limsup v_{n}=1, \lim \inf v_{n}=-1$
(d) t_{n} and u_{n} converge.
(e) s_{n}, t_{n}, u_{n}, and v_{n} are bounded.

Exercise 1.4. Let $\left(q_{n}\right)$ be an enumeration of all the rationals in the interval $(0,1]$.
(a) Give the set of subsequential limits for $\left(q_{n}\right)$.
(b) Give the values of $\lim \sup q_{n}$ and $\lim \inf q_{n}$.

Proof.
(a) $S_{q}=[0,1] \subseteq \mathbb{R}$ since \mathbb{R} was constructed such that it consisted of all limits of sequences in \mathbb{Q}.
(b) $\limsup q_{n}=1$ and $\liminf q_{n}=0$.

Exercise 1.5. How would you explain 'what is limsup'? For example, you can say something about: What's the difference between limsup and sup? What is most counter-intuitive about limsup? Can you state some sentences that seems to be correct, but is actually wrong?

Proof.

- I would explain limsup as describing the behavior of the tail end of a sequence, specifically its least upper bound.
- The difference between limsup and sup is that sup describes a single set while limsup describes the limit of sets. This means that sup is more sensitive to small changes in the set and can be affected by outliers. This is reflected in the fact that limsup is less than any value a such that there are finitely many $s_{m}>a$.
- A counter intuitive fact about limsup is that it doesn't need to be an upper bound for any element in the set. To see this, consider the sequence $\left(s_{n}\right)=\frac{1}{n}$. $\lim \sup s_{n}=0$ but $0<\frac{1}{n}$ for all $n \in \mathbb{N}$.
- For any $a \in \mathbb{R}$ such that $a \geq \lim \sup s_{n}$, there are only finitely many terms with $s_{m}>a$ is a false statement that appears to be true. This is reflected by taking $a=0$ and considering the previous example. This statement becomes true when the inequality is strict.

