MATH 104 HW4

Jad Damaj

February, 18 2022

1 Hw 4

Exercise 1.1 (Ross 12.10). Prove (s_n) is bounded if and only if $\limsup |s_n| < +\infty$.

Proof. First, suppose (s_n) is bounded, then there exists M such that for all n, $|s_n| < M$ so $\sup\{s_n : n > 1\} < M$. Now, since $0 \le \sup\{s_n : n > N\} \le \sup\{s_n : n > 1\}$, we see that $\limsup |s_n| < +\infty$

Now, suppose we have $\limsup |s_n| < +\infty$. Let $L = \limsup |s_n|$. Observe that by definition, there exists some N such that for all M > N,

 $|\sup\{|s_n|: n > M\} - \limsup(|s_n|)| < 1.$

So since the sequence of limits is decreasing we have

 $\sup\{|s_n|: n > N+1\} < \limsup|s_n|+1$

which implies that for all n > M, $|s_n| < \limsup |s_n| + 1$. So taking $M' = \max\{|s_1|, \ldots, |s_N|, |s_{N+1}, \limsup |s_n| + 1\}$, we see that $|s_n| < M'$ for all n. \Box

Exercise 1.2 (Ross 12.12). Let (s_n) be a sequence of nonnegative numbers, and for each n define $\sigma_n = \frac{1}{n}(s_1 + \cdots + s_n)$.

(a) Show

 $\liminf s_n \le \liminf \sigma_n \le \limsup \sigma_n \le \limsup s_n.$

- (b) Show that if $\lim s_n$ exists, then σ_n exists and $\lim \sigma_n = \lim s_n$.
- (c) Give an example where $\lim \sigma_n$ exists, but $\lim s_n$ does not exist.
- *Proof.* (a) The second inequality follows from definitions so we will begin by showing the rightmost inequality.

First, we claim that for M > N,

$$\sup\{\sigma_n : n > M\} \le \frac{1}{M}(s_1 + s_2 + \dots + s_N) + \sup\{s_n : n > N\}$$

To see this observe that for σ_n with n > N,

$$\begin{aligned} \sigma_n &= \frac{1}{M} (s_1 + \dots + s_N + s_{N+1} + \dots + s_n) \\ &\leq \frac{1}{M} (s_1 + \dots + s_N + \sup\{s_n : n > N\} + \dots + \sup\{s_n : n > N\} \\ &= \frac{1}{M} (s_1 + \dots + s_N + (M - N) \sup\{s_n : n > N\}) \\ &= \frac{1}{M} (s_1 + \dots + s_N\} + \frac{M - N}{M} \sup\{s_n : n > n\} \\ &\leq \frac{1}{M} (s_1 + s_2 + \dots + s_N) + \sup\{s_n : n > N\} \end{aligned}$$

Thus, since it is an upper bound for all σ_n with n > M, we see that our claim is true by definition of sup.

Now, fixing N and letting M tend to infinity we see that the term containing $\frac{1}{M}$ tends to zero so $\limsup \sigma_n \leq \sup\{n : n > N\}$. Thus, letting N tend to infinity we get the result $\limsup \sigma_n \leq \limsup s_n$.

A symmetric argument can be made to show $\liminf s_n \leq \liminf \sigma_n$ using the claim that for M > N,

$$\frac{1}{M}(s_1 + s_2 + \dots + s_N) + \inf\{s_n : n > N\} \le \inf\{\sigma_n : n > M\}.$$

Exercise 1.3 (Ross 14.2). Determine which of the following converge. Justify your answers.

- (a) $\sum \frac{n-1}{n^2}$
- (b) $\sum (-1)^n$
- (c) $\sum \frac{3n}{n^3}$
- (d) $\sum \frac{n^3}{3^n}$
- (e) $\sum \frac{n^2}{n!}$
- (f) $\sum \frac{1}{n^n}$
- (g) $\sum \frac{n}{2^n}$

Proof. (a) Diverges by comparison to $\frac{1}{n}$

- (b) Diverges since terms don't converge to 0.
- (c) Converges by comparison to $\frac{1}{n^2}$.
- (d) Converges by root test.
- (e) Converges by ratio test.

- (f) Converges by root test.
- (g) Converges by ratio test.

Exercise 1.4 (Ross 14.10). Find a series $\sum a_n$ that diverges by Root Test but for which the Ratio Test gives no information.

Proof. Consider the sum $\sum_{n=1}^{\infty} (\frac{1}{2})^{(-1)^n - n}$. Observe that for even terms $|\frac{a_{n+1}}{n}| = 2$ but for odd terms $|\frac{a_{n+1}}{a_n}| = \frac{1}{8}$ so ratio test is inconclusive but applying root test yields $2^{\frac{1}{n}-1}$ for even terms and $2^{-\frac{1}{n}-1}$ odd terms. Both of these converge to $(\frac{1}{2})^{-1} = 2$ so it diverges by root test.

Exercise 1.5 (Rudin 3.6). Investigate the behavior (convergence or divergence) of $\sum a_n$ if

(a) $a_n = \sqrt{n+1} - \sqrt{n}$

(b)
$$a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$$

(c) $(\sqrt[n]{n}+1)^n$

(d) $\frac{1}{1+z^n}$ for complex values of z

Proof.

- (a) Observe that $a_n = (\sqrt{n+1} \sqrt{n}) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$. So $a_n \ge \frac{1}{3\sqrt{n}}$ so it diverges by comparison test.
- (b) Observe that $a_n = (\frac{\sqrt{n+1}-\sqrt{n}}{n})\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}} = \frac{1}{n\sqrt{n+1}+n\sqrt{n}}$. So $a_n \leq \frac{1}{n^{3/2}}$ so it converges by comparison test.
- (c) Observe that $|(\sqrt[n]{n-1})^n|^{1/n} = |(\sqrt[n]{n-1})|$ so $\lim |a_n|^{1/n} = 0$ so it converges by root test.
- (d) If |z| < 1 then this sum diverges since the term $|z|^n \to 0$ so $a_n \to 1$. If $|z| \ge 1$ then $\frac{1}{2z^n} \le a_n \le \frac{1}{z^n}$ so by comparison test we see the sum converges for all |z| > 1 and for all z on the unit circle except the point z = 1.

Exercise 1.6 (Rudin 3.7). Prove that the convergence of $\sum a_n$ implies the convergence of _____

$$\sum \frac{\sqrt{a_n}}{n}$$

if $a_n \geq 0$.

Proof. Consider the terms of the sequence a_n . Divide the sequence into two portions, terms such that $a_n < \frac{1}{n}$ and terms such that $a_n \ge \frac{1}{n}$. For terms such that $a_n < \frac{1}{n}$, $\frac{\sqrt{a_n}}{n} < \frac{1}{n^{3/2}}$. Now, we consider the terms a_n such that $a_n \ge \frac{1}{n}$ and will denote them as the subsequence a_{n_k} .

First, observe that the sum $\sum_{k=0}^{\infty} a_{n_k}$ must convergent since it is contained within the original sum, and the original sum consists of all positive terms. Also since $a_n \to 0$, there must be some M such that for n > M $a_n < 1$. For such $n, \sqrt{a_n} < 1$ so $\frac{\sqrt{a_n}}{n} < \frac{1}{n}$. Finally, we know by comparison test $\sum_{k=0}^{\infty} \frac{1}{n_k}$ must converge.

Now, let $\varepsilon > 0$ be arbitrary. Since $\sum_{k=1}^{\infty} \frac{1}{n^{3/2}}$ is convergent, there is some N_1 such that for all $p > q > N_1 \sum_{n=q}^{p} \frac{1}{n^{3/2}} < \frac{\varepsilon}{2}$. Similarly, there exists N_2 such that for all $p > q > N_2 \sum_{k=q}^{p} \frac{1}{n_k} < \frac{\varepsilon}{2}$. Thus, considering the partial sum $\sum_{n=q}^{p} a_n$ with $p > q > \max\{N_1, N_2, M\}$, we see that

$$\sum_{n=q}^{p} \frac{\sqrt{a_n}}{n} \le \sum_{n=q}^{p} \frac{1}{n^{3/2}} + \sum_{k=q}^{p} \frac{1}{n_k} \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

So the series converges by the cauchy criterion.

Exercise 1.7 (Rudin 3.9). If $\sum a_n$ converges, and if $\{b_n\}$ is monotonic and bounded, prove that $\sum a_n b_n$ converges.

Proof. Consider the following cases: b_n is increasing or b_n is decreasing. Since it is bounded in both cases, it must converge to some limit B. If b_n is increasing observe that the sequence $\{B - b_n\}$ is a positive decreasing sequence. A similar statement can be mode about $\{b_n - B\}$ if b_n is decreasing.

Now, since the partial sums of $\sum a_n$ form a bounded sequence, we know the series $\sum (B-b_n)a_n$ converges if b_n is increasing. Since $\sum Ba_n$ also converges we can conclude that $\sum b_n a_n$ converges. A symmetrical argument shows $\sum b_n a_n$ converges if b_n is decreasing.

Exercise 1.8 (Rudin 3.11). Suppose $a_n > 0$, $s_n = a_1 + \cdots + a_n$, and $\sum a_n$ diverges.

- (a) Prove that $\sum \frac{a_n}{1+a_n}$ diverges.
- (b) Prove that

$$\frac{a_{N+1}}{s_{N+1}} + \dots + \frac{a_{N+k}}{s_{N+k}} \ge 1 - \frac{s_N}{s_{N+k}}$$

and deduce that $\sum \frac{a_n}{s_n}$ diverges.

(c) Prove that

$$\frac{a_n}{s_n^2} \le \frac{1}{s_{n-1}} - \frac{1}{s_n}$$

and deduce that $\sum \frac{a_n}{s_n^2}$ converges.

(d) What can be said about

$$\sum \frac{a_n}{1+na_n}$$
 and $\sum \frac{a_n}{1+n^2a_n}$

Proof.

- (a) We will consider two cases: either there exists some N such that for all n > N, $a_n < 1$ or there exists infinitely many n with $a_n \ge 1$. Suppose there exists some N such that for all n > N, $a_n < 1$. Then for n > N, $\frac{a_n}{1+a_n} \ge \frac{a_n}{1+1} = \frac{a_n}{2}$ so applying the comparison test we see that $\sum_{n=N+1}^{\infty} \frac{a_n}{1+a_n}$ diverges. Thus, the whole sequence diverges. Now, suppose there exists infinitely many n with $a_n \ge 1$. Then there are infinitely many terms with $\frac{a_n}{1+a_n} \ge \frac{a_n}{a_n+a_n} = \frac{1}{2}$. Thus, $\frac{a_n}{1+a_n}$ cannot converge to 0 so the sum diverges.
- (b) Observe that since the terms are positive s_n forms a decreasing sequence so

$$\frac{a_{N+1}}{s_{N+1}} + \dots + \frac{a_{N+k}}{s_{N+k}} \ge \frac{a_{N+1}}{s_{N+k}} + \dots + \frac{a_{N+k}}{s_{N+k}}$$
$$= \frac{a_{N+1} + \dots + a_{N+k}}{s_{N+k}}$$
$$= \frac{s_{N+k} - s_N}{s_{N+k}}$$
$$= 1 - \frac{s_N}{s_{N+k}}$$

Now, since s_n is increasing we can make the term $\frac{s_N}{s_{N+k}}$ arbitrarily small by increasing k. Thus, the partial sum $\sum_{n=N+1}^{N+k} \frac{a_n}{s_n}$ can be made arbitrarily close to 1 for any N so it doesn't satisfy the cauchy condition and hence doesn't converge.

(c) Since s_n forms a decreasing sequence

$$\frac{a_n}{s_n^2} \le \frac{a_n}{s_n(s_{n-1})} = \frac{s_n - s_{n-1}}{s_n(s_{n-1})} = \frac{1}{s_{n-1}} - \frac{1}{s_n}$$

By the above inequality we see that

$$\sum_{n=p}^{q} \frac{a_n}{s_n^2} = \left(\frac{1}{s_{p-1}} - \frac{1}{s_p}\right) + \left(\frac{1}{s_p} - \frac{1}{s_{p+1}}\right) + \dots + \left(\frac{1}{s_{q-1}} - \frac{1}{s_q}\right)$$
$$= \frac{1}{s_{p-1}} - \frac{1}{s_q}$$
$$< \frac{1}{s_{n-1}}$$

Thus since s_n is increasing for $\varepsilon > 0$ we can choose N such that $s_n > \frac{1}{\varepsilon}$ for n > N so $\sum_{n=p}^{q} \frac{a_n}{s_n^2} \leq \varepsilon$ for p, q > N so the sum in convergent.

(d) First, observe that $\frac{a_n}{1+n^2a_n} \leq \frac{a_n}{n_n^a} = \frac{1}{n^2}$ so $\sum \frac{a_n}{1+n^2a_n}$ converges by comparison test. Now, we claim that $\sum \frac{a_n}{1+na_n}$ may converge or diverge. Consider the sequence $a_n = \frac{1}{n}$. $\sum a_n$ diverges and $\frac{a_n}{1+na_n} = \frac{1/n}{1+1} = \frac{1}{2n}$ so $\sum \frac{a_n}{1+na_n}$ diverges. Also, consider the sequence defined as follows $a_n = \begin{cases} \frac{1}{n^2} & \text{if } n \text{ is not a perfect square} \\ 1 & \text{otherwise} \end{cases}$ eg. $a_n = 1, \frac{1}{2^2}, \frac{1}{3^3}, 1, \frac{1}{5^2}, \cdots$ Observe that $\sum a_n$ does not converge since $\lim a_n \neq 0$. Now consider the terms $a_n = \frac{a_n}{1+na_n} = \begin{cases} \frac{1}{n^2+na_n} & \text{if } n \text{ is not a perfect square} \\ \frac{1}{1+n} & \text{otherwise} \end{cases}$ The terms that were of the form $a_n = 1$ can now be written as $\frac{1}{1+n}$ but

The terms that were of the form $a_n = 1$ can now be written as $\frac{1}{1+n}$ but since n was assumed to be a perfect square their sum can be written as $\sum \frac{1}{1+n^2}$, combining this with $\sum \frac{1}{n^2+na_n}$, which converges by our previous discussion, we see that $\sum \frac{a_n}{1+na_n}$ converges.