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Exercise 1.1 (Ross 12.10). Prove (sn) is bounded if and only if lim sup |sn| <
+∞.

Proof. First, suppose (sn) is bounded, then there exists M such that for all n,
|sn| < M so sup{sn : n > 1} < M . Now, since 0 ≤ sup{sn : n > N} ≤ sup{sn :
n > 1}, we see that lim sup |sn| < +∞
Now, suppose we have lim sup |sn| < +∞. Let L = lim sup |sn|. Observe that
by definition, there exists some N such that for all M > N ,

| sup{|sn| : n > M} − lim sup(|sn|)| < 1.

So since the sequence of limits is decreasing we have

sup{|sn| : n > N + 1} < lim sup |sn|+ 1

which implies that for all n > M , |sn| < lim sup |sn| + 1. So taking M ′ =
max{|s1|, . . . , |sN |, |sN+1, lim sup |sn|+ 1}, we see that |sn| < M ′ for all n.

Exercise 1.2 (Ross 12.12). Let (sn) be a sequence of nonnegative numbers,
and for each n define σn = 1

n (s1 + · · ·+ sn).

(a) Show
lim inf sn ≤ lim inf σn ≤ lim supσn ≤ lim sup sn.

(b) Show that if lim sn exists, then σn exists and limσn = lim sn.

(c) Give an example where limσn exists, but lim sn does not exist.

Proof. (a) The second inequality follows from definitions so we will begin by
showing the rightmost inequality.
First, we claim that for M > N ,

sup{σn : n > M} ≤ 1

M
(s1 + s2 + · · ·+ sN ) + sup{sn : n > N}

1



To see this observe that for σn with n > N ,

σn =
1

M
(s1 + · · ·+ sN + sN+1 + · · ·+ sn)

≤ 1

M
(s1 + · · ·+ sN + sup{sn : n > N}+ · · ·+ sup{sn : n > N}

=
1

M
(s1 + · · ·+ sN + (M −N) sup{sn : n > N})

=
1

M
(s1 + · · ·+ sN}+ M −N

M
sup{sn : n > n}

≤ 1

M
(s1 + s2 + · · ·+ sN ) + sup{sn : n > N}

Thus, since it is an upper bound for all σn with n > M , we see that our
claim is true by definition of sup.
Now, fixing N and letting M tend to infinity we see that the term con-
taining 1

M tends to zero so lim supσn ≤ sup{n : n > N}. Thus, letting N
tend to infinity we get the result lim supσn ≤ lim sup sn.
A symmetric argument can be made to show lim inf sn ≤ lim inf σn using
the claim that for M > N ,

1

M
(s1 + s2 + · · ·+ sN ) + inf{sn : n > N} ≤ inf{σn : n > M}.

Exercise 1.3 (Ross 14.2). Determine which of the following converge. Justify
your answers.

(a)
∑

n−1
n2

(b)
∑

(−1)n

(c)
∑

3n
n3

(d)
∑

n3

3n

(e)
∑

n2

n!

(f)
∑

1
nn

(g)
∑

n
2n

Proof. (a) Diverges by comparison to 1
n

(b) Diverges since terms don’t converge to 0.

(c) Converges by comparison to 1
n2 .

(d) Converges by root test.

(e) Converges by ratio test.
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(f) Converges by root test.

(g) Converges by ratio test.

Exercise 1.4 (Ross 14.10). Find a series
∑

an that diverges by Root Test but
for which the Ratio Test gives no information.

Proof. Consider the sum
∑

( 12 )
(−1)n−n. Observe that for even terms |an+1

n | = 2
but for odd terms |an+1

an
| = 1

8 so ratio test is inconclusive but applying root test

yields 2
1
n−1 for even terms and 2−

1
n−1 odd terms. Both of these converge to

( 12 )
−1 = 2 so it diverges by root test.

Exercise 1.5 (Rudin 3.6). Investigate the behavior (convergence or divergence)
of

∑
an if

(a) an =
√
n+ 1−

√
n

(b) an =
√
n+1−

√
n

n

(c) ( n
√
n+ 1)n

(d) 1
1+zn for complex values of z

Proof.

(a) Observe that an = (
√
n+ 1−

√
n)

√
n+1+

√
n√

n+1+
√
n
= 1√

n+1+
√
n
. So

an ≥ 1
3
√
n
so it diverges by comparison test.

(b) Observe that an = (
√
n+1−

√
n

n )
√
n+1+

√
n√

n+1+
√
n
= 1

n
√
n+1+n

√
n
. So an ≤ 1

n3/2 so

it converges by comparison test.

(c) Observe that |( n
√
n−1)n|1/n = |( n

√
n−1)| so lim |an|1/n = 0 so it converges

by root test.

(d) If |z| < 1 then this sum diverges since the term |z|n → 0 so an → 1.
If |z| ≥ 1 then 1

2zn ≤ an ≤ 1
zn so by comparison test we see the sum

converges for all |z| > 1 and for all z on the unit circle except the point
z = 1.

Exercise 1.6 (Rudin 3.7). Prove that the convergence of
∑

an implies the
convergence of ∑ √

an
n

if an ≥ 0.
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Proof. Consider the terms of the sequence an. Divide the sequence into two
portions, terms such that an < 1

n and terms such that an ≥ 1
n . For terms such

that an < 1
n ,

√
an

n < 1
n3/2 . Now, we consider the terms an such that an ≥ 1

n
and will denote them as the subsequence ank

.
First, observe that the sum

∑∞
k=0 ank

must convergent since it is contained
within the original sum, and the original sum consists of all positive terms.
Also since an → 0, there must be some M such that for n > M an < 1. For

such n,
√
an < 1 so

√
an

n < 1
n . Finally, we know by comparison test

∑∞
k=0

1
nk

must converge.
Now, let ε > 0 be arbitrary. Since

∑∞
k=1

1
n3/2 is convergent, there is some N1

such that for all p > q > N1

∑p
n=q

1
n3/2 < ε

2 . Similarly, there exists N2 such that

for all p > q > N2

∑p
k=q

1
nk

< ε
2 . Thus, considering the partial sum

∑p
n=q an

with p > q > max{N1, N2,M}, we see that

p∑
n=q

√
an
n

≤
p∑

n=q

1

n3/2
+

p∑
k=q

1

nk
≤ ε

2
+

ε

2
= ε

So the series converges by the cauchy criterion.

Exercise 1.7 (Rudin 3.9). If
∑

an converges, and if {bn} is monotonic and
bounded, prove that

∑
anbn converges.

Proof. Consider the following cases: bn is increasing or bn is decreasing. Since
it is bounded in both cases, it must converge to some limit B. If bn is increasing
observe that the sequence {B− bn} is a positive decreasing sequence. A similar
statement can be mode about {bn −B} if bn is decreasing.
Now, since the partial sums of

∑
an form a bounded sequence, we know the

series
∑

(B−bn)an converges if bn is increasing. Since
∑

Ban also converges we
can conclude that

∑
bnan converges. A symmetrical argument shows

∑
bnan

converges if bn is decreasing.

Exercise 1.8 (Rudin 3.11). Suppose an > 0, sn = a1 + · · · + an, and
∑

an
diverges.

(a) Prove that
∑ an

1+an
diverges.

(b) Prove that
aN+1

sN+1
+ · · ·+ aN+k

sN+k
≥ 1− sN

sN+k

and deduce that
∑ an

sn
diverges.

(c) Prove that
an
s2n

≤ 1

sn−1
− 1

sn

and deduce that
∑ an

s2n
converges.
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(d) What can be said about∑ an
1 + nan

and
∑ an

1 + n2an

Proof.

(a) We will consider two cases: either there exists some N such that for all
n > N , an < 1 or there exists infinitely many n with an ≥ 1.
Suppose there exists some N such that for all n > N , an < 1. Then for
n > N , an

1+an
≥ an

1+1 = an

2 so applying the comparison test we see that∑∞
n=N+1

an

1+an
diverges. Thus, the whole sequence diverges.

Now, suppose there exists infinitely many n with an ≥ 1. Then there
are infinitely many terms with an

1+an
≥ an

an+an
= 1

2 . Thus, an

1+an
cannot

converge to 0 so the sum diverges.

(b) Observe that since the terms are positive sn forms a decreasing sequence
so

aN+1

sN+1
+ · · ·+ aN+k

sN+k
≥ aN+1

sN+k
+ · · ·+ aN+k

sN+k

=
aN+1 + · · ·+ aN+k

sN+k

=
sN+k − sN

sN+k

= 1− sN
sN+k

Now, since sn is increasing we can make the term sN
sN+k

arbitrarily small by

increasing k . Thus, the partial sum
∑N+k

n=N+1
an

sn
can be made arbitrarily

close to 1 for any N so it doesn’t satisfy the cauchy condition and hence
doesn’t converge.

(c) Since sn forms a decreasing sequence

an
s2n

≤ an
sn(sn−1)

=
sn − sn−1

sn(sn−1)
=

1

sn−1
− 1

sn

By the above inequality we see that

q∑
n=p

an
s2n

= (
1

sp−1
− 1

sp
) + (

1

sp
− 1

sp+1
) + · · ·+ (

1

sq−1
− 1

sq
)

=
1

sp−1
− 1

sq

<
1

sn−1

Thus since sn is increasing for ε > 0 we can choose N such that sn > 1
ε

for n > N so
∑q

n=p
an

s2n
≤ ε for p, q > N so the sum in convergent.
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(d) First, observe that an

1+n2an
≤ an

na
n
= 1

n2 so
∑ an

1+n2an
converges by compar-

ison test.
Now, we claim that

∑ an

1+nan
may converge or diverge.

Consider the sequence an = 1
n .

∑
an diverges and an

1+nan
= 1/n

1+1 = 1
2n so∑ an

1+nan
diverges.

Also, consider the sequence defined as follows an =

{
1
n2 if n is not a perfect square

1 otherwise
.

eg. an = 1, 1
22 ,

1
33 , 1,

1
52 , · · · Observe that

∑
an does not converge since

lim an ̸= 0. Now consider the terms an = an

1+nan
=

{
1

n2+nan
if n is not a perfect square

1
1+n otherwise

.

The terms that were of the form an = 1 can now be written as 1
1+n but

since n was assumed to be a perfect square their sum can be written as∑
1

1+n2 , combining this with
∑

1
n2+nan

, which converges by our previous
discussion, we see that

∑ an

1+nan
converges.
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