MATH 104 HW4

Jad Damaj

February, 182022

1 Hw 4

Exercise 1.1 (Ross 12.10). Prove $\left(s_{n}\right)$ is bounded if and only if limsup $\left|s_{n}\right|<$ $+\infty$.

Proof. First, suppose $\left(s_{n}\right)$ is bounded, then there exists M such that for all n, $\left|s_{n}\right|<M$ so $\sup \left\{s_{n}: n>1\right\}<M$. Now, since $0 \leq \sup \left\{s_{n}: n>N\right\} \leq \sup \left\{s_{n}\right.$: $n>1\}$, we see that limsup $\left|s_{n}\right|<+\infty$
Now, suppose we have $\limsup \left|s_{n}\right|<+\infty$. Let $L=\limsup \left|s_{n}\right|$. Observe that by definition, there exists some N such that for all $M>N$,

$$
\left|\sup \left\{\left|s_{n}\right|: n>M\right\}-\lim \sup \left(\left|s_{n}\right|\right)\right|<1
$$

So since the sequence of limits is decreasing we have

$$
\sup \left\{\left|s_{n}\right|: n>N+1\right\}<\lim \sup \left|s_{n}\right|+1
$$

which implies that for all $n>M,\left|s_{n}\right|<\limsup \left|s_{n}\right|+1$. So taking $M^{\prime}=$ $\max \left\{\left|s_{1}\right|, \ldots,\left|s_{N}\right|,\left|s_{N+1}, \limsup \right| s_{n} \mid+1\right\}$, we see that $\left|s_{n}\right|<M^{\prime}$ for all n.

Exercise 1.2 (Ross 12.12). Let $\left(s_{n}\right)$ be a sequence of nonnegative numbers, and for each n define $\sigma_{n}=\frac{1}{n}\left(s_{1}+\cdots+s_{n}\right)$.
(a) Show

$$
\liminf s_{n} \leq \liminf \sigma_{n} \leq \limsup \sigma_{n} \leq \limsup s_{n}
$$

(b) Show that if $\lim s_{n}$ exists, then σ_{n} exists and $\lim \sigma_{n}=\lim s_{n}$.
(c) Give an example where $\lim \sigma_{n}$ exists, but $\lim s_{n}$ does not exist.

Proof. (a) The second inequality follows from definitions so we will begin by showing the rightmost inequality.
First, we claim that for $M>N$,

$$
\sup \left\{\sigma_{n}: n>M\right\} \leq \frac{1}{M}\left(s_{1}+s_{2}+\cdots+s_{N}\right)+\sup \left\{s_{n}: n>N\right\}
$$

To see this observe that for σ_{n} with $n>N$,

$$
\begin{aligned}
\sigma_{n} & =\frac{1}{M}\left(s_{1}+\cdots+s_{N}+s_{N+1}+\cdots+s_{n}\right) \\
& \leq \frac{1}{M}\left(s_{1}+\cdots+s_{N}+\sup \left\{s_{n}: n>N\right\}+\cdots+\sup \left\{s_{n}: n>N\right\}\right. \\
& =\frac{1}{M}\left(s_{1}+\cdots+s_{N}+(M-N) \sup \left\{s_{n}: n>N\right\}\right) \\
& =\frac{1}{M}\left(s_{1}+\cdots+s_{N}\right\}+\frac{M-N}{M} \sup \left\{s_{n}: n>n\right\} \\
& \leq \frac{1}{M}\left(s_{1}+s_{2}+\cdots+s_{N}\right)+\sup \left\{s_{n}: n>N\right\}
\end{aligned}
$$

Thus, since it is an upper bound for all σ_{n} with $n>M$, we see that our claim is true by definition of sup.
Now, fixing N and letting M tend to infinity we see that the term containing $\frac{1}{M}$ tends to zero so $\lim \sup \sigma_{n} \leq \sup \{n: n>N\}$. Thus, letting N tend to infinity we get the result $\lim \sup \sigma_{n} \leq \lim \sup s_{n}$.
A symmetric argument can be made to show $\lim \inf s_{n} \leq \lim \inf \sigma_{n}$ using the claim that for $M>N$,

$$
\frac{1}{M}\left(s_{1}+s_{2}+\cdots+s_{N}\right)+\inf \left\{s_{n}: n>N\right\} \leq \inf \left\{\sigma_{n}: n>M\right\}
$$

Exercise 1.3 (Ross 14.2). Determine which of the following converge. Justify your answers.
(a) $\sum \frac{n-1}{n^{2}}$
(b) $\sum(-1)^{n}$
(c) $\sum \frac{3 n}{n^{3}}$
(d) $\sum \frac{n^{3}}{3^{n}}$
(e) $\sum \frac{n^{2}}{n!}$
(f) $\sum \frac{1}{n^{n}}$
(g) $\sum \frac{n}{2^{n}}$

Proof. (a) Diverges by comparison to $\frac{1}{n}$
(b) Diverges since terms don't converge to 0 .
(c) Converges by comparison to $\frac{1}{n^{2}}$.
(d) Converges by root test.
(e) Converges by ratio test.
(f) Converges by root test.
(g) Converges by ratio test.

Exercise 1.4 (Ross 14.10). Find a series $\sum a_{n}$ that diverges by Root Test but for which the Ratio Test gives no information.

Proof. Consider the sum $\sum\left(\frac{1}{2}\right)^{(-1)^{n}-n}$. Observe that for even terms $\left|\frac{a_{n+1}}{n}\right|=2$ but for odd terms $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{8}$ so ratio test is inconclusive but applying root test yields $2^{\frac{1}{n}-1}$ for even terms and $2^{-\frac{1}{n}-1}$ odd terms. Both of these converge to $\left(\frac{1}{2}\right)^{-1}=2$ so it diverges by root test.

Exercise 1.5 (Rudin 3.6). Investigate the behavior (convergence or divergence) of $\sum a_{n}$ if
(a) $a_{n}=\sqrt{n+1}-\sqrt{n}$
(b) $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$
(c) $(\sqrt[n]{n}+1)^{n}$
(d) $\frac{1}{1+z^{n}}$ for complex values of z

Proof.
(a) Observe that $a_{n}=(\sqrt{n+1}-\sqrt{n}) \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}$. So
$a_{n} \geq \frac{1}{3 \sqrt{n}}$ so it diverges by comparison test.
(b) Observe that $a_{n}=\left(\frac{\sqrt{n+1}-\sqrt{n}}{n}\right) \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{n \sqrt{n+1}+n \sqrt{n}}$. So $a_{n} \leq \frac{1}{n^{3 / 2}}$ so it converges by comparison test.
(c) Observe that $\left|(\sqrt[n]{n}-1)^{n}\right|^{1 / n}=|(\sqrt[n]{n}-1)|$ so $\lim \left|a_{n}\right|^{1 / n}=0$ so it converges by root test.
(d) If $|z|<1$ then this sum diverges since the term $|z|^{n} \rightarrow 0$ so $a_{n} \rightarrow 1$. If $|z| \geq 1$ then $\frac{1}{2 z^{n}} \leq a_{n} \leq \frac{1}{z^{n}}$ so by comparison test we see the sum converges for all $|z|>1$ and for all z on the unit circle except the point $z=1$.

Exercise 1.6 (Rudin 3.7). Prove that the convergence of $\sum a_{n}$ implies the convergence of

$$
\sum \frac{\sqrt{a_{n}}}{n}
$$

if $a_{n} \geq 0$.

Proof. Consider the terms of the sequence a_{n}. Divide the sequence into two portions, terms such that $a_{n}<\frac{1}{n}$ and terms such that $a_{n} \geq \frac{1}{n}$. For terms such that $a_{n}<\frac{1}{n}, \frac{\sqrt{a_{n}}}{n}<\frac{1}{n^{3 / 2}}$. Now, we consider the terms a_{n} such that $a_{n} \geq \frac{1}{n}$ and will denote them as the subsequence $a_{n_{k}}$.
First, observe that the sum $\sum_{k=0}^{\infty} a_{n_{k}}$ must convergent since it is contained within the original sum, and the original sum consists of all positive terms. Also since $a_{n} \rightarrow 0$, there must be some M such that for $n>M a_{n}<1$. For such $n, \sqrt{a_{n}}<1$ so $\frac{\sqrt{a_{n}}}{n}<\frac{1}{n}$. Finally, we know by comparison test $\sum_{k=0}^{\infty} \frac{1}{n_{k}}$ must converge.
Now, let $\varepsilon>0$ be arbitrary. Since $\sum_{k=1}^{\infty} \frac{1}{n^{3 / 2}}$ is convergent, there is some N_{1} such that for all $p>q>N_{1} \sum_{n=q}^{p} \frac{1}{n^{3 / 2}}<\frac{\varepsilon}{2}$. Similarly, there exists N_{2} such that for all $p>q>N_{2} \sum_{k=q}^{p} \frac{1}{n_{k}}<\frac{\varepsilon}{2}$. Thus, considering the partial sum $\sum_{n=q}^{p} a_{n}$ with $p>q>\max \left\{N_{1}, N_{2}, M\right\}$, we see that

$$
\sum_{n=q}^{p} \frac{\sqrt{a_{n}}}{n} \leq \sum_{n=q}^{p} \frac{1}{n^{3 / 2}}+\sum_{k=q}^{p} \frac{1}{n_{k}} \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

So the series converges by the cauchy criterion.
Exercise 1.7 (Rudin 3.9). If $\sum a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\sum a_{n} b_{n}$ converges.

Proof. Consider the following cases: b_{n} is increasing or b_{n} is decreasing. Since it is bounded in both cases, it must converge to some limit B. If b_{n} is increasing observe that the sequence $\left\{B-b_{n}\right\}$ is a positive decreasing sequence. A similar statement can be mode about $\left\{b_{n}-B\right\}$ if b_{n} is decreasing.
Now, since the partial sums of $\sum a_{n}$ form a bounded sequence, we know the series $\sum\left(B-b_{n}\right) a_{n}$ converges if b_{n} is increasing. Since $\sum B a_{n}$ also converges we can conclude that $\sum b_{n} a_{n}$ converges. A symmetrical argument shows $\sum b_{n} a_{n}$ converges if b_{n} is decreasing.

Exercise 1.8 (Rudin 3.11). Suppose $a_{n}>0, s_{n}=a_{1}+\cdots+a_{n}$, and $\sum a_{n}$ diverges.
(a) Prove that $\sum \frac{a_{n}}{1+a_{n}}$ diverges.
(b) Prove that

$$
\frac{a_{N+1}}{s_{N+1}}+\cdots+\frac{a_{N+k}}{s_{N+k}} \geq 1-\frac{s_{N}}{s_{N+k}}
$$

and deduce that $\sum \frac{a_{n}}{s_{n}}$ diverges.
(c) Prove that

$$
\frac{a_{n}}{s_{n}^{2}} \leq \frac{1}{s_{n-1}}-\frac{1}{s_{n}}
$$

and deduce that $\sum \frac{a_{n}}{s_{n}^{2}}$ converges.
(d) What can be said about

$$
\sum \frac{a_{n}}{1+n a_{n}} \quad \text { and } \quad \sum \frac{a_{n}}{1+n^{2} a_{n}}
$$

Proof.
(a) We will consider two cases: either there exists some N such that for all $n>N, a_{n}<1$ or there exists infinitely many n with $a_{n} \geq 1$.
Suppose there exists some N such that for all $n>N, a_{n}<1$. Then for $n>N, \frac{a_{n}}{1+a_{n}} \geq \frac{a_{n}}{1+1}=\frac{a_{n}}{2}$ so applying the comparison test we see that $\sum_{n=N+1}^{\infty} \frac{a_{n}}{1+a_{n}}$ diverges. Thus, the whole sequence diverges.
Now, suppose there exists infinitely many n with $a_{n} \geq 1$. Then there are infinitely many terms with $\frac{a_{n}}{1+a_{n}} \geq \frac{a_{n}}{a_{n}+a_{n}}=\frac{1}{2}$. Thus, $\frac{a_{n}}{1+a_{n}}$ cannot converge to 0 so the sum diverges.
(b) Observe that since the terms are positive s_{n} forms a decreasing sequence so

$$
\begin{aligned}
\frac{a_{N+1}}{s_{N+1}}+\cdots+\frac{a_{N+k}}{s_{N+k}} & \geq \frac{a_{N+1}}{s_{N+k}}+\cdots+\frac{a_{N+k}}{s_{N+k}} \\
& =\frac{a_{N+1}+\cdots+a_{N+k}}{s_{N+k}} \\
& =\frac{s_{N+k}-s_{N}}{s_{N+k}} \\
& =1-\frac{s_{N}}{s_{N+k}}
\end{aligned}
$$

Now, since s_{n} is increasing we can make the term $\frac{s_{N}}{s_{N+k}}$ arbitrarily small by increasing k. Thus, the partial sum $\sum_{n=N+1}^{N+k} \frac{a_{n}}{s_{n}}$ can be made arbitrarily close to 1 for any N so it doesn't satisfy the cauchy condition and hence doesn't converge.
(c) Since s_{n} forms a decreasing sequence

$$
\frac{a_{n}}{s_{n}^{2}} \leq \frac{a_{n}}{s_{n}\left(s_{n-1}\right)}=\frac{s_{n}-s_{n-1}}{s_{n}\left(s_{n-1}\right)}=\frac{1}{s_{n-1}}-\frac{1}{s_{n}}
$$

By the above inequality we see that

$$
\begin{aligned}
\sum_{n=p}^{q} \frac{a_{n}}{s_{n}^{2}} & =\left(\frac{1}{s_{p-1}}-\frac{1}{s_{p}}\right)+\left(\frac{1}{s_{p}}-\frac{1}{s_{p+1}}\right)+\cdots+\left(\frac{1}{s_{q-1}}-\frac{1}{s_{q}}\right) \\
& =\frac{1}{s_{p-1}}-\frac{1}{s_{q}} \\
& <\frac{1}{s_{n-1}}
\end{aligned}
$$

Thus since s_{n} is increasing for $\varepsilon>0$ we can choose N such that $s_{n}>\frac{1}{\varepsilon}$ for $n>N$ so $\sum_{n=p}^{q} \frac{a_{n}}{s_{n}^{2}} \leq \varepsilon$ for $p, q>N$ so the sum in convergent.
(d) First, observe that $\frac{a_{n}}{1+n^{2} a_{n}} \leq \frac{a_{n}}{n_{n}^{a}}=\frac{1}{n^{2}}$ so $\sum \frac{a_{n}}{1+n^{2} a_{n}}$ converges by comparison test.
Now, we claim that $\sum \frac{a_{n}}{1+n a_{n}}$ may converge or diverge.
Consider the sequence $a_{n}=\frac{1}{n}$. $\sum a_{n}$ diverges and $\frac{a_{n}}{1+n a_{n}}=\frac{1 / n}{1+1}=\frac{1}{2 n}$ so $\sum \frac{a_{n}}{1+n a_{n}}$ diverges.
Also, consider the sequence defined as follows $a_{n}= \begin{cases}\frac{1}{n^{2}} & \text { if } n \text { is not a perfect square } \\ 1 & \text { otherwise }\end{cases}$ eg. $a_{n}=1, \frac{1}{2^{2}}, \frac{1}{3^{3}}, 1, \frac{1}{5^{2}}, \cdots$ Observe that $\sum a_{n}$ does not converge since $\lim a_{n} \neq 0$. Now consider the terms $a_{n}=\frac{a_{n}}{1+n a_{n}}=\left\{\begin{array}{ll}\frac{1}{n^{2}+n a_{n}} & \text { if } n \text { is not a perfect square } \\ \frac{1}{1+n} & \text { otherwise }\end{array}\right.$. The terms that were of the form $a_{n}=1$ can now be written as $\frac{1}{1+n}$ but since n was assumed to be a perfect square their sum can be written as $\sum \frac{1}{1+n^{2}}$, combining this with $\sum \frac{1}{n^{2}+n a_{n}}$, which converges by our previous discussion, we see that $\sum \frac{a_{n}}{1+n a_{n}}$ converges.

