MATH 104 HW5

Jad Damaj

March, 42022

1 Hw 5

Exercise 1.1 (Ross 13.3). Let B be the set of all bounded sequences $x=$ $\left(x_{1}, x_{2}, \ldots\right)$, and define $d(x, y)=\sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \ldots\right\}$.
(a) Show d is a metric for B.
(b) Does $d^{*}(x, y)=\sum_{j=1}^{\infty}\left|x_{j}-y_{j}\right|$ define a metric for B ?

Proof.

(a) First, note that since the sequences are bounded, the difference between the terms of the sequence are bounded as well hence the function d is real valued. Observe that $d(x, y)=0$ iff $\sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \ldots\right\}=0$ iff $\left|x_{j}-y_{j}\right|=0$ for $j=1,2, \ldots$ iff $x_{j}=y_{j}$ for $j=1,2, \ldots$ iff $x=y$. Also since all terms are nonnegative, the supernum is nonnegative.
Since $\left|x_{j}-y_{j}\right|=\left|y_{j}-x_{j}\right|$, it follows that $d(x, y)=d(y, x)$. Finally, consider a third sequence $z=\left(z_{1}, z_{2}, \ldots\right)$. Observe that for all $j,\left|x_{j}-y_{j}\right| \leq$ $\left|x_{j}-z_{j}\right|+\left|y_{j}-z_{j}\right|$ so $d(x, y)=\sup \left\{\left|x_{j}-y_{j}\right|\right\} \leq \sup \left\{\left|x_{j}-z_{j}\right|+\left|y_{j}-z_{j}\right|\right\} \leq$ $\sup \left\{\left|x_{j}-z_{j}\right|\right\}+\sup \left\{\left|y_{j}-z_{j}\right|\right\}=d(x, z)+d(y, z)$.
(b) This distance function is not a metric since the sum of bounded sequences need not converge to a real number. To this consider the sequences $x=$ $(1,1, \ldots), y=(0,0, \ldots)$, and observe that $d^{*}(x, y)=\infty \notin \mathbb{R}$.

Exercise 1.2 (Ross 13.5).
(a) Verify one of DerMorgan's Laws for sets:

$$
\bigcap\{S \backslash U: U \in \mathcal{U}\}=S \backslash \bigcap\{U: U \in \mathcal{U}\}
$$

(b) Show that the intersection of any collection of sets is a closed set.

Proof.
(a) Observe that $x \in \bigcap\{S \backslash U: U \in \mathcal{U}\}$ iff $x \in S \backslash U$ for $U \in \mathcal{U}$ iff $x \notin U$ for $U \in \mathcal{U}$ iff $x \notin \bigcup\{U: U \in \mathcal{U}\}$ iff $x \in S \backslash \bigcap\{U: U \in \mathcal{U}\}$ so the sets are equal.
(b) Suppose $\bigcap F_{\alpha}$ is an intersection of closed sets. Then $S \backslash F_{\alpha}$ is open for each α. Observe that by part (a), $S \backslash \bigcap F_{\alpha}=\bigcup S \backslash F_{\alpha}$ which is an arbitrary union of open sets so it is open. Thus, since $S \backslash \bigcap F_{\alpha}$ is open, it follows that $\bigcap F_{\alpha}$ is closed.

Exercise 1.3 (Ross 13.7). Show that every open set in \mathbb{R} is a disjoint union of a finite or infinite sequence of open intervals.

Proof. Let U be an open set in \mathbb{R}. We will begin by defining an equivalence relation on U by $x \sim y$ iff there is an open interval $(a, b) \subset U$ such that $x, y \in(a, b)$.
To see that this is an equivalence relation, first observe that $x \sim x$ since U is open so there is an open ball for some $r>0$ such that $B_{r}(x) \subset U$ so $x \in$ $(x-r, x+r) \subset U$. It is symmetric since if $x \sim y$, then $y \sim x$ immediately. Finally, if $x \sim y$ and $y \sim z$ then there open intervals (a, b) and (c, d) with $x, y \in(a, b) \subset U$ and $y, z \in(c, d) \subset U$. Observe that $y<b$ and $c<y$ so $c<b$, thus we see that $x, z \in(a, b) \cup(c, d)=(\min (a, c), \max (b, d)) \subset U$ so $x \sim z$.
This equivalence relation partitions U into either a finite or infinte collection of disjoint sets U_{i} corresponding to the equivalence classes, with $U=\bigcup U_{i}$. First, observe that each U_{i} is open. To see this, let $p \in U_{i}$ be arbitrary. Since U is open there is an open ball $B_{r}(p) \subset U$. We claim that $B_{r}(p) \subset U_{i}$ as well. For each $x \in B_{r}(p), p, x \in(p-r, p+r) \subset U$ so $p \sim x$ so $x \in U_{i}$.
Now, we claim that for each $i, U_{i}=\left(\inf U_{i}, \sup U_{i}\right)$. Note that $\sup U_{i}, \inf u_{i} \notin U_{i}$ otherwise there would be an open ball centered at the point contained in U_{i} which suggests that the point is not an upper or lower bound, respectively. So we see that for $p \in U_{i}$, $\inf U_{i}<p<\sup U_{i}$ so $p \in\left(\inf U_{i}, \sup U_{i}\right)$, so we have $U_{i} \subset\left(\inf U_{i}, \sup U_{i}\right)$.
Next, let $p \in\left(\inf U_{i}, \sup U_{i}\right)$ be arbitrary and let $\varepsilon_{1}=\sup U_{i}-p$ and $\varepsilon_{2}=$ $p-\inf U_{i}$. Now, by properties of sup and inf we can choose $p_{1} \in U_{i}$ with $\sup U_{i}-\varepsilon_{1}<p_{1}<\sup U_{i}$ and $p_{2} \in U_{i}$ with $\inf U_{i}<p_{2}<\inf U_{i}+\varepsilon_{2}$. Since $p_{1}, p_{2} \in U_{i}$, there is an open interval contained in U_{i} with $p_{1}, p_{2} \in(a, b)$. Since $a<p_{2}<p<p_{1}<b$, this implies $p \in(a, b)$ so $p \in U_{i}$, as desired.
Thus, we can conclude that $U=\bigcup\left(\inf U_{i}, \sup U_{i}\right)$.
Exercise 1.4. For a subset S of a metric space, prove that if $S_{1}=\bar{S}$ and $S_{2}=\overline{S_{1}}$, then $S_{1}=S_{2}$.

Proof. We will show $\overline{\bar{S}}=\bar{S}$. Note that $\bar{S} \subset \overline{\bar{S}}$ so it suffices to show $\overline{\bar{S}} \subset \bar{S}$. If $s \in \overline{\bar{S}}$, then there is a sequence s_{n} with $s_{i} \in \bar{S}$ such that $s_{n} \rightarrow s$. Also, for each $s_{i} \in S_{n}$, there is a sequence $\left(s_{i}\right)_{n}$ such that $\left(s_{i}\right)_{n} \rightarrow s_{i}$. Using Cantor's diagonal argument we can consider the sequence $\left(s_{j}\right)_{j}$ for $j=1,2, \ldots$ and observe that it converges to s. Thus s is the limit of a sequence of terms in S so $s \in \bar{S}$.

Exercise 1.5. Prove that \bar{S} is the intersection of all closed subsets in X that contains S.

Proof. Let $\left\{F_{\alpha}\right\}$ be the set of all closed subsets in X contained S. We will show $\bar{S}=\bigcap\left\{F_{\alpha}\right\}$. First observe that by exercise $4, \bar{S}$ is a closed set containing S so $\bar{S} \supset \bigcap\left\{F_{\alpha}\right\}$. Now, we will show $\bar{S} \subset \bigcap\left\{F_{\alpha}\right\}$.
Let $s \in \bar{S}$ be arbitrary and suppose $s \notin \bigcap\left\{F_{\alpha}\right\}$. Then for some $\alpha, s \notin F_{\alpha}$. Since F_{α} is closed, F_{α}^{c} is open and $s \in F_{\alpha}^{c}$ so there is an open ball such that $B_{r}(x) \subset F_{\alpha}^{c}$. Now, since $s \in \bar{S}$, there is a sequence $s_{n} \rightarrow s$ with $s_{n} \in S$. Since by assumption $S \subset F_{\alpha}$, there is a sequence of terms in F_{α} converging to s. This is a contradiction since we assumed we assumed there was an open ball centered at s contained in F_{α}^{c} meaning there can be no terms of F_{α} within r of s for some $r>0$. Thus, $s \in \bigcap\left\{F_{\alpha}\right\}$, as desired.

