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Exercise 1.1 (Ross 13.3). Let B be the set of all bounded sequences x =
(x1, x2, . . .), and define d(x, y) = sup{|xj − yj | : j = 1, 2, . . .}.

(a) Show d is a metric for B.

(b) Does d∗(x, y) =
∑∞

j=1 |xj − yj | define a metric for B?

Proof.

(a) First, note that since the sequences are bounded, the difference between
the terms of the sequence are bounded as well hence the function d is real
valued. Observe that d(x, y) = 0 iff sup{|xj − yj | : j = 1, 2, . . .} = 0 iff
|xj − yj | = 0 for j = 1, 2, . . . iff xj = yj for j = 1, 2, . . . iff x = y. Also
since all terms are nonnegative, the supernum is nonnegative.
Since |xj − yj | = |yj − xj |, it follows that d(x, y) = d(y, x). Finally,
consider a third sequence z = (z1, z2, . . .). Observe that for all j, |xj−yj | ≤
|xj−zj |+ |yj−zj | so d(x, y) = sup{|xj−yj |} ≤ sup{|xj−zj |+ |yj−zj |} ≤
sup{|xj − zj |}+ sup{|yj − zj |} = d(x, z) + d(y, z).

(b) This distance function is not a metric since the sum of bounded sequences
need not converge to a real number. To this consider the sequences x =
(1, 1, . . .), y = (0, 0, . . .), and observe that d∗(x, y) = ∞ ̸∈ R.

Exercise 1.2 (Ross 13.5).

(a) Verify one of DerMorgan’s Laws for sets:⋂
{S \ U : U ∈ U} = S \

⋂
{U : U ∈ U}.

(b) Show that the intersection of any collection of sets is a closed set.

Proof.
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(a) Observe that x ∈
⋂
{S \ U : U ∈ U} iff x ∈ S \ U for U ∈ U iff x ̸∈ U for

U ∈ U iff x ̸∈
⋃
{U : U ∈ U} iff x ∈ S \

⋂
{U : U ∈ U} so the sets are

equal.

(b) Suppose
⋂
Fα is an intersection of closed sets. Then S\Fα is open for each

α. Observe that by part (a), S \
⋂
Fα =

⋃
S \ Fα which is an arbitrary

union of open sets so it is open. Thus, since S \
⋂

Fα is open, it follows
that

⋂
Fα is closed.

Exercise 1.3 (Ross 13.7). Show that every open set in R is a disjoint union of
a finite or infinite sequence of open intervals.

Proof. Let U be an open set in R. We will begin by defining an equivalence
relation on U by x ∼ y iff there is an open interval (a, b) ⊂ U such that
x, y ∈ (a, b).
To see that this is an equivalence relation, first observe that x ∼ x since U
is open so there is an open ball for some r > 0 such that Br(x) ⊂ U so x ∈
(x − r, x + r) ⊂ U . It is symmetric since if x ∼ y, then y ∼ x immediately.
Finally, if x ∼ y and y ∼ z then there open intervals (a, b) and (c, d) with
x, y ∈ (a, b) ⊂ U and y, z ∈ (c, d) ⊂ U . Observe that y < b and c < y so c < b,
thus we see that x, z ∈ (a, b) ∪ (c, d) = (min(a, c),max(b, d)) ⊂ U so x ∼ z.
This equivalence relation partitions U into either a finite or infinte collection of
disjoint sets Ui corresponding to the equivalence classes, with U =

⋃
Ui. First,

observe that each Ui is open. To see this, let p ∈ Ui be arbitrary. Since U is
open there is an open ball Br(p) ⊂ U . We claim that Br(p) ⊂ Ui as well. For
each x ∈ Br(p), p, x ∈ (p− r, p+ r) ⊂ U so p ∼ x so x ∈ Ui.
Now, we claim that for each i, Ui = (inf Ui, supUi). Note that supUi, inf ui ̸∈ Ui

otherwise there would be an open ball centered at the point contained in Ui

which suggests that the point is not an upper or lower bound, respectively. So
we see that for p ∈ Ui, inf Ui < p < supUi so p ∈ (inf Ui, supUi), so we have
Ui ⊂ (inf Ui, supUi).
Next, let p ∈ (inf Ui, supUi) be arbitrary and let ε1 = supUi − p and ε2 =
p − inf Ui. Now, by properties of sup and inf we can choose p1 ∈ Ui with
supUi − ε1 < p1 < supUi and p2 ∈ Ui with inf Ui < p2 < inf Ui + ε2. Since
p1, p2 ∈ Ui, there is an open interval contained in Ui with p1, p2 ∈ (a, b). Since
a < p2 < p < p1 < b, this implies p ∈ (a, b) so p ∈ Ui, as desired.
Thus, we can conclude that U =

⋃
(inf Ui, supUi).

Exercise 1.4. For a subset S of a metric space, prove that if S1 = S and
S2 = S1, then S1 = S2.

Proof. We will show S = S. Note that S ⊂ S so it suffices to show S ⊂ S. If

s ∈ S, then there is a sequence sn with si ∈ S such that sn → s. Also, for each
si ∈ Sn, there is a sequence (si)n such that (si)n → si. Using Cantor’s diagonal
argument we can consider the sequence (sj)j for j = 1, 2, . . . and observe that
it converges to s. Thus s is the limit of a sequence of terms in S so s ∈ S.
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Exercise 1.5. Prove that S is the intersection of all closed subsets in X that
contains S.

Proof. Let {Fα} be the set of all closed subsets in X contained S. We will show
S =

⋂
{Fα}. First observe that by exercise 4, S is a closed set containing S so

S ⊃
⋂
{Fα}. Now, we will show S ⊂

⋂
{Fα}.

Let s ∈ S be arbitrary and suppose s ̸∈
⋂
{Fα}. Then for some α, s ̸∈ Fα.

Since Fα is closed, F c
α is open and s ∈ F c

α so there is an open ball such that
Br(x) ⊂ F c

α. Now, since s ∈ S, there is a sequence sn → s with sn ∈ S. Since
by assumption S ⊂ Fα, there is a sequence of terms in Fα converging to s. This
is a contradiction since we assumed we assumed there was an open ball centered
at s contained in F c

α meaning there can be no terms of Fα within r of s for some
r > 0. Thus, s ∈

⋂
{Fα}, as desired.
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