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Exercise 1.1 (Ross 13.3). Let B be the set of all bounded sequences x =
(x1,x2,...), and define d(z,y) = sup{|z; —y;|: j =1,2,...}.

(a)
(b)

Show d is a metric for B.

Does d*(z,y) = Y72, |x; — y;| define a metric for B?

Proof.

(a)

First, note that since the sequences are bounded, the difference between
the terms of the sequence are bounded as well hence the function d is real
valued. Observe that d(x,y) = 0 iff sup{|z; —y;| : j =1,2,...} = 0 iff
lz; —y;l =0for j =1,2,...iff x; = y; for j =1,2,... iff z = y. Also
since all terms are nonnegative, the supernum is nonnegative.

Since |z; — y;| = |y; — ], it follows that d(z,y) = d(y,z). Finally,
consider a third sequence z = (z1, 22, ...). Observe that for all j, |z;—y;| <
|5 — 2|+ |y; — 2| so d(x, y) = sup{|z; —y;[} < sup{|z; —z;[+]y; — 2]} <
sup{|z; — z;|} +sup{ly; — z;|} = d(z, z) + d(y, 2).

This distance function is not a metric since the sum of bounded sequences
need not converge to a real number. To this consider the sequences x =
(1,1,...),y=(0,0,...), and observe that d*(z,y) = co ¢ R.

O

Exercise 1.2 (Ross 13.5).

(a)

(b)

Verify one of DerMorgan’s Laws for sets:
(WS\U:Ueu} =8\ {U:Uecu}.

Show that the intersection of any collection of sets is a closed set.

Proof.



(a) Observe that z € {S\U:U eU} iff x € S\U for U e iff z ¢ U for
UeUif e ¢ J{U:U elU}iff x € S\({U : U € U} so the sets are
equal.

(b) Suppose [ F, is an intersection of closed sets. Then S\ F,, is open for each
a. Observe that by part (a), S\ () F. =S\ F, which is an arbitrary
union of open sets so it is open. Thus, since S\ [ F, is open, it follows
that () F,, is closed.

O

Exercise 1.3 (Ross 13.7). Show that every open set in R is a disjoint union of
a finite or infinite sequence of open intervals.

Proof. Let U be an open set in R. We will begin by defining an equivalence
relation on U by a ~ y iff there is an open interval (a,b) C U such that
z,y € (a,b).

To see that this is an equivalence relation, first observe that x ~ x since U
is open so there is an open ball for some r > 0 such that B,(z) C U so = €
(x —r,xz+r) C U. It is symmetric since if x ~ y, then y ~ z immediately.
Finally, if z ~ y and y ~ z then there open intervals (a,b) and (¢,d) with
x,y € (a,b) CU and y,z € (¢,d) C U. Observe that y < b and ¢ < y so ¢ < b,
thus we see that x, z € (a,b) U (¢,d) = (min(a, ¢), max(b,d)) C U so x ~ z.
This equivalence relation partitions U into either a finite or infinte collection of
disjoint sets U; corresponding to the equivalence classes, with U = | U;. First,
observe that each U; is open. To see this, let p € U; be arbitrary. Since U is
open there is an open ball B,.(p) C U. We claim that B,(p) C U; as well. For
each ¢ € B,.(p), p,x € (p—r,p+7r) CUsop~xsozxecl.

Now, we claim that for each ¢, U; = (inf U;, sup U;). Note that sup U, inf u; & U;
otherwise there would be an open ball centered at the point contained in U;
which suggests that the point is not an upper or lower bound, respectively. So
we see that for p € Uy, inf U; < p < supU; so p € (inf U;, sup U;), so we have
U; C (inf U;, sup Uz)

Next, let p € (inf U;, supU;) be arbitrary and let 1 = supU; — p and g5 =
p — inf U;. Now, by properties of sup and inf we can choose p; € U; with
supU; —e1 < p1 < supU; and py € U; with inf U; < ps < inf U; 4+ €5. Since
p1,p2 € Uj, there is an open interval contained in U; with p1,ps € (a,b). Since
a < ps < p<p1 <b, this implies p € (a,b) so p € U;, as desired.

Thus, we can conclude that U = |J(inf U;, sup U;). O

Exercise 1.4. For a subset S of a metric space, prove that if §; = S and

SQ = 571, then Sl = SQ.

Pmoj, We will show S = 5. Note that S C S so it suffices to show S C S. If

s € S, then there is a sequence s,, with s; € S such that s,, — s. Also, for each
s; € Sp, there is a sequence (s;), such that (s;), — s;. Using Cantor’s diagonal
argument we can consider the sequence (s;); for j = 1,2,... and observe that
it converges to s. Thus s is the limit of a sequence of terms in S so s € S. 0O



Exercise 1.5. Prove that S is the intersection of all closed subsets in X that
contains S.

Proof. Let {F,} be the set of all closed subsets in X contained S. We will show
S = ({F.,}. First observe that by exercise 4, S is a closed set containing S so
S D N{F.}. Now, we will show S C ({F.}.

Let s € S be arbitrary and suppose s ¢ (J{F,}. Then for some «, s & F,.
Since F, is closed, FS is open and s € FS so there is an open ball such that
B,(z) C FS. Now, since s € S, there is a sequence s, — s with s,, € S. Since
by assumption S C F,, there is a sequence of terms in F, converging to s. This
is a contradiction since we assumed we assumed there was an open ball centered
at s contained in F{ meaning there can be no terms of F,, within r of s for some
r > 0. Thus, s € ({F.}, as desired. O
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