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Exercise 1.1. In class, we proved that [0, 1] is sequentially compact, can you
prove that [0, 1]2 in R2 is sequentially compact? (In general, if metric space
X and Y are sequentially compact, we can show that X × Y is sequentially
compact.)

Proof. We will show the more general case. Consider two metric spaces X and
Y with metrics dX and dY . We can define the metric space X × Y under the
metric d((x1, y1), (x2, y2)) =

√
dX(x1, x2)2 + dY (y1, y2)2. We claim that a se-

quence (xn, yn) converges to (x, y) in X × Y if and only if xn converges to x in
X and yn converges to y in Y .
First, suppose (xn, yn) converges to (x, y) in X×Y . Then for all ε > 0 there ex-
ists so N such that if n > N

√
dX(xn, x)2 + dY (yn, y)2 < ε. Taking this same N

we see that for n > N , dX(xn, x) =
√
dX(xn, x)2 ≤

√
dX(xn, x) + dY (yn, y)2 ≤

ε. The same is true for dY (yn, y).
Now, suppose xn converges to x in X and yn converges to y in Y . Let ε > 0
be arbitrary. Observe that there exists NX , NY such that if n > Nx then
dX(xn, x) <

ε√
2
and if n > NY then dY (yn, y) <

ε√
2
. TakingN = max(NX , NY )

then if n > N , d((xn, yn), (x, y)) =
√

dX(xn, x)2 + dY (yn, y)2 ≤
√

ε2

2 + ε2

2 = ε,

as desired.
If X and Y are sequentially compact consider the metric space X×Y . Suppose
(xn, yn) is an arbitrary sequence in X × Y . Observe that since X is compact
there is some subsequence xnk

that converges to some x ∈ X. Considering the
sequence ynk

, we see that since Y is compact, there is some subsequence ynkl

that converges to some y in Y . Now, the subseqeunce xnkl
converges to x as

well since so by the above claim we see that (xn, yn)kl
converges to (x, y) in

X × Y . Hence X × Y is sequentially compact.

Exercise 1.2. Let E be the set of points x ∈ [0, 1] whose decimal expansion
consist of only 4 and 7 (e.g. 0.4747744 is allowed), is E countable? is E compact?

Proof. The set E is not countable. To see this, suppose there is an enu-
meration of E where the ith element in the enumeration is represented by
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0.di,1di,2 · · · dn,1 · · · which each di,j is either 4,7 or 0 (eg. extending all fi-
nite decimal representations to be infinite ones). Then consider the number

d = 0.d1d2 · · · where di =

{
4 if di,i = 7

7 otherwise
. Observe that d differs from each

element in the enumeration and hence was not included contradicting our as-
sumption.
We also claim that E is compact. Since it is a subset of R, it suffices to show
that E is closed and bounded. E ⊂ [0, 1] so it is bounded. Now, to show E is
closed we will show its complement is open.
Consider an arbitrary p ∈ [0, 1) and observe that it has a decimal representation
given by 0.d1d2d3 · · · . Either this decimal representation terminates, eg. there
is some i such that for all j > i dj = 0, or it continues forever.
First, suppose n has a finite decimal representation. Then there is some i such
that for all j > i, dj = 0. Then, there must be some k ≤ i such that dk isn’t 4
or 7. Now, consider the smallest k′ ≥ k such that dk′ ̸= 9. Such a k′ must exists
the decimal terminates. Then, observe that Br(n) where r = 10−k′

contains no
element of E as all such digits maintain the first k′ − 1 digits, one of which is
not 4 or 7.
Now, if n has a an infinite decimal representation. Then consider the smallest k
such that dk isn’t 4 or 7. There must be such a k since n is not in E. Now, take
the smallest k′ such that dk′ ̸= 9. Such a k′ must exists the decimal terminates.
Then, observe that Br(n) where r = 10−k′

contains no element of E as all such
digits maintain the first k′ − 1 digits, one of which is not 4 or 7. If there is no
k′ such that dk′ ̸= 0 then n contains an infinite tail of 9s so it is equivalent to
the terminating decimal achieved by replacing the last non-9 digit d with d+ 1
so it can be treated as above.
Thus, since each element not in E has an open ball not contained in E, E is
closed and hence is compact.

Exercise 1.3. Let A1, A2, · · · be subset of a metric space. If B =
⋃

i Ai, then
B̄ ⊃

⋃
i Āi. Is it possible that this inclusion is an strict inclusion?

Proof. Yes, it is possible that this inclusion is strict. Consider the sets Ai =
(0, 1 − ( 12 )

i). Observe that B =
⋃

i Ai = (0, 1) so B = [0, 1]. But, since

Ai = [0, 1− ( 12 )
i] and

⋃
i Ai = [0, 1) we see that the inclusion can be strict.

Exercise 1.4. Last time, we showed that any open subset of R is a countable
disjoint union of open intervals. Here is a claim and argument about closed
set: every closed subset of R is a countable union of closed intervals. Because
every closed set is the complement of an open set, and adjacent open intervals
sandwich a closed interval. Can you see where the argument is wrong? Can
you give an example of a closed set which is not a countable union of closed
intervals? (here countable include countably infinite and finite)

Proof. The argument presented above has an error in that it assumes the infinite
union of closed sets in closed. Since there can be an infinite number of open
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intervals there can be an infinite number of closed intervals sandwiched between
them, whose infinite union is not necessary closed.
An example of a closed set which is not a countable union of closed intervals can
be seen by taking E as in problem 2 but restricting it to contain only infinite
decimals with 4 or 7.
To this that this is not a countable union, we first define an equivalence relation
on E by x ∼ y iff there is some a, b such that x, y ∈ [a, b] ⊂ E.
First, we will show ∼ is an equivalence relation.
If x ∈ E, x ∈ [x, x] ⊂ E so x ∼ x.
If x ∼ y then there are a, b such that x, y ∈ [a, b] ⊂ E. Then, clearly y ∼ x.
If x ∼ y and y ∼ z then there is a, b such that x, y ∈ [a, b] ⊂ E and y, z ∈
[c, d] ⊂ E. Note that c ≤ y ≤ b so c ≤ d so observe that x, z ∈ [a, b] ∪ [c, d] =
[min(a, c),max(b, d] ⊂ E so x ∼ z.
Now, we show that in E each equivalence class consists of a single point of which
there are uncountably many by exercise 2, hence they form an uncountable
disjoint union.
If x = 0.dx,1dx,2 · · · and y = 0.dy,1dy,2 are two distinct points in E with x < y
then x and y must have a different decimal representations. Let k be the smallest
integer such that dx,k ̸= dx,y. Observe that x < x+10−k < y but x+10−k ̸∈ E
so since any closed interval containing x and y contains all points between them,
there can be no such closed interval. Thus, x ̸∼ y, as desired.
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