MATH 104 HW7

Jad Damaj

March, 182022

1 Hw 7

Exercise 1.1. If X and Y are open cover compact, can you prove that $X \times Y$ is open cover compact?

Proof. First, we claim that for U_{α} an open set in $X \times Y$, the sets $\left(U_{\alpha}\right)_{X}=\{x \in$ $X \mid(x, y) \in U_{\alpha}$ for some $\left.y \in Y\right\}$ and $\left(U_{\alpha}\right)_{Y}=\left\{y \in Y \mid(x, y) \in U_{\alpha}\right.$ for some $x \in$ $X\}$ are open in X and Y, respectively.
We will show this for $\left(U_{\alpha}\right)_{X}$ as the other case is identical. Let $x \in\left(U_{\alpha}\right)_{X}$ be arbitrary. Then $\exists y \in Y$ such that $(x, y) \in U_{\alpha}$. Since U_{α} is open, $\exists r>0$ such that $B_{r}((x, y)) \subset U_{\alpha}$. We claim that $B_{r}(x) \subset\left(U_{\alpha}\right)_{X}$. Suppose this is not the case, then there is some $x^{\prime} \in B_{r}(x)$ such that $x^{\prime} \notin\left(U_{\alpha}\right)_{X}$. Now, this implies that $\left(x^{\prime}, y\right) \notin U_{\alpha}$ but since $d_{X \times Y}\left((x, y),\left(x^{\prime}, y\right)\right)=d_{X}\left(x, x^{\prime}\right)<r,\left(x^{\prime} y\right) \in B_{r}((x, y))$, contradicting our assumption. Thus $\left(U_{\alpha}\right)_{X}$ is open in X.
Now, suppose $\left\{U_{\alpha}\right\}$ is an open cover of $X \times Y$. For $x \in X$, define the set $S_{x}=\left\{U_{\alpha} \mid x \in\left(U_{\alpha}\right)_{X}\right\}$. For $y \in Y$ observe that $(x, y) \in U_{\alpha}$ for some $U_{\alpha} \in S_{x}$ for some α since U_{α} it is an open cover. Since U_{α} is open $\exists r_{y}>0$ such that $B_{r_{y}}((x, y)) \subset U_{\alpha}$. Let $V_{x, y}=B_{\frac{r_{y}}{2}}((x, y))$. Observe that $\bigcup_{y \in Y}\left(V_{x, y}\right)_{Y}$ is an open cover of Y so there exists some finite subcover $\left(V_{x, y_{1}}\right)_{Y}, \ldots,\left(V_{x, y_{n}}\right)_{Y}$. Now, let $V_{x}=\bigcap_{i=1}^{n}\left(V_{x, y_{i}}\right)_{X}$ and note that $x \in V_{x}$ and it is open since it the intersection of finitely many open sets.
Next, observe that $\left\{V_{x}\right\}_{x \in X}$ is an open cover of X so there exists a finite subcover $V_{x_{1}}, \ldots, V_{x_{m}}$. Note that by the construction of each $V_{x, y}$ we can associate with some $U_{x, y}$. We claim that $\bigcup_{i=1}^{m} \bigcup_{j=1}^{n_{x_{i}}} U_{x_{i}, y_{j}}$ is an open cover of $X \times Y$. For $(x, y) \in X \times Y, x \in V_{x_{i}}$ for some i and there exists some j such that $y \in$ $\left(V_{x_{i}, y_{j}}\right)_{Y}$. We claim that $(x, y) \in U_{x_{i}, y_{j}}$. To see this observe that $d(x, y) \leq$ $d\left(x, x_{i}\right)+d\left(x_{i}, y\right) \leq \frac{r_{y}}{2}+\frac{r_{y}}{2}=r_{y}$ so by construction $(x, y) \in U_{x_{i}, y_{i}}$, as desired. Thus, $X \times Y$ has a finite subcover.

Exercise 1.2. Let $f: X \rightarrow Y$ be a continuous map between metric spaces. Let $A \subset X$ be a subset. Decide if the followings are true or not. If true, give an argument, if false, give a counter-example.

- if A is open, then $f(A)$ is open
- if A is closed, then $f(A)$ is closed.
- if A is bounded, then $f(A)$ is bounded.
- if A is compact, then $f(A)$ is compact.
- if A is connected, then $f(A)$ is connected.

Proof.

- This is false. Consider the function $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)=0$. This is continuous since for every open set in \mathbb{R} if it contains 0 then its preimage is $[0,1]$ which is open in $[0,1]$. If it doesn't contain 0 , then its preimage in \emptyset.
- This is false. Consider the function $f:(0,1) \rightarrow[0,1]$ by $f(x)=x$. f is continuous and $(0,1)$ is closed in $(0,1)$ but $f((0,1))=(0,1)$ is not closed in $[0,1]$.
- This is false. Consider the function $f:(0,1) \rightarrow \mathbb{R}$ by $f(x)=\frac{1}{x}$. This function is continuous but and $(0,1)$ is bounded but $f(0,1)=(1, \infty) \in \mathbb{R}$ which is not bounded.
- This is true. Suppose $\left\{U_{\alpha}\right\}$ is an open cover of $f(A)$. Then, since f is continuous, $f^{-1}\left(U_{\alpha}\right)$ is open for all α. Now since A is compact and $\left\{f^{-1}\left(U_{\alpha}\right)\right\}$ is open cover of A, there exists a finite subcover $f^{-1}\left(U_{1}\right), \ldots, f^{-1}\left(U_{n}\right)$. Now, U_{1}, \ldots, U_{n} is also a finite subcover of $f(A)$ so $f(A)$ is compact.
- This is true. Suppose A is connected but $f(A)$ is disconnected. Then there exists open sets G, H such that $f(A)=G \sqcup H$. Since f is continuous, $f^{-1}(G)$ and $F^{-1}(H)$ are also open. Observe that these sets are also disjoint otherwise so $A=f^{-1}(G) \sqcup f^{-1}(H)$ so A is not connected, contradicting our assumption.

Exercise 1.3. Prove that, there is not continuous map $f:[0,1] \rightarrow \mathbb{R}$, such that f is surjective.

Proof. Suppose these was a continuous map $f:[0,1] \rightarrow \mathbb{R}$ that was surjective. Then, by exercise 2 , since $[0,1]$ is compact, this would imply that $f([0,1])=\mathbb{R}$ is compact. Since \mathbb{R} is not compact there can be no such function.

