MATH 104 HW8

Jad Damaj

March, 252022

1 Hw 8

Exercise 1.1. Let $f_{n}(x)=\frac{n+\sin x}{2 n+\cos n^{2} x}$, show that f_{n} converges uniformly on \mathbb{R}.
Proof. We claim that f_{n} converges uniformly to $\frac{1}{2}$ on \mathbb{R}. To see this, first observe that since $-1 \leq \sin x, \cos x \leq 1$, we have

$$
\frac{n-1}{2 n+1} \leq f_{n}(x) \leq \frac{n+1}{2 n-1}
$$

Now, since $\frac{1}{2}-\frac{n-1}{2 n+1}=\frac{3}{4 n+2}$ and $\frac{n+1}{2 n-1}-\frac{1}{2}=\frac{3}{4 n-2}$,

$$
\frac{3}{4 n+2} \leq\left|f_{n}(x)-\frac{1}{2}\right| \leq \frac{3}{4 n-2}
$$

So for $\varepsilon>0$ taking $N=\frac{1}{4}\left(\frac{3}{\varepsilon}+2\right)$, it follows that for $n>N, \frac{3}{4 n-2}<\varepsilon$ so $\left|f_{n}(x)-\frac{1}{2}\right|<\varepsilon$, as desired.

Exercise 1.2. Let $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$. Show that the series is continuous on $[-1,1]$ if $\sum_{n}\left|a_{n}\right|<\infty$. Prove that $\sum_{n=1}^{\infty} n^{-2} x^{n}$ is continuous on $[-1,1]$.

Proof. First, observe that since $x \in[-1,1], x^{n} \in[-1,1]$ so $\left|a_{n} x^{n}\right| \leq\left|a_{n}\right|$. Now, since $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, letting $M_{n}=\left|a_{n}\right|$ and applying the Weierstrass M test, we see that $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$ converges uniformly and hence, since each $a_{n} x^{n}$ is continuous, $f(x)$ is continuous as well.

Exercise 1.3. Show that $f(x)=\sum_{n} x^{n}$ represent a continuous function on $(-1,1)$, but the convergence is not uniform.

Proof. First, observe that to show $f(x)$ is continuous on $(-1,1)$ is suffices to show $f(x)$ is uniformly convergent on $[-a, a]$ for all $0<a<1$. To see why this is true, let $x_{0} \in(-1,1)$ be arbitrary. Then there exists some $0<a<1$ such that $x_{0} \in(-a, a)$. Now, since $f(x)$ is uniformly convergent on $[-a, a]$ and x^{n} is continuous for all $n, f(x)$ is continuous on $[-a, a]$. Which implies more specifically, it is continuous at x_{0} since there is some $r>0$ such that $B_{r}\left(x_{0}\right) \subset(-a, a)$ so for any $\varepsilon>0, \delta>0$ can be found such that it satisfies the continuity condition in $[a,-a]$ so taking $\delta^{\prime}=\min (\delta, r)$ satisfies the continuity
condition in $(-1,1)$.
Now, to show $f(x)$ is uniformly convergent on each $[-a, a]$ for $0<a<1$ observe that $\left|x^{n}\right| \leq\left|a^{n}\right|$ so since $\sum\left|a^{n}\right|$ is a convergent geometric series, applying the Weierstrass M test with $M_{n}=\left|a^{n}\right|$ shows $f(x)$ is convergent on $[-a, a]$.
Finally, we will show that $f(x)$ does not converge uniformly on $(-1,1)$. We will show that for some $\varepsilon>0, \forall n$ there exists x such that $\left|f_{n}(x)-f(x)\right|>\varepsilon$. Let $\varepsilon>1$ and observe that for arbitrary $n, f_{n}(x)=\sum_{k=1}^{n} x^{n}=\frac{1-x^{n}}{1-x}$ while $f(x)=\frac{1}{1-x}$ so $\left|f(x)-f_{n}(x)\right|=\frac{x^{n}}{1-x}$. Now, if $\frac{(1 / 2)^{n}}{1-(1 / 2)}>1$ let $x=\frac{1}{2}$, otherwise assume $x>\frac{1}{2}$ so $\frac{x^{n}}{1-x}>\frac{(1 / 2)^{n}}{1-x}$. Choose x such that $x>1-\left(\frac{1}{2}\right)^{n}$, we see that $\frac{(1 / 2)^{n}}{1-x}>1$ so $\frac{x^{n}}{1-x}>1$, as desired.

