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Exercise 1.1. Construct a smooth function f : R — R such that f(z) = 0 for
z<0and f(z)=1for z > 1, and f(z) € [0,1] when = € (0,1)
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We claim that f(x) satisfies the desired conditions.
First, we show that for each n,
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Proof. Consider the function given by f(z) =
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where each p; i, g; 1 are polynomials with degree at least n.
For n = 1, observe that
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Now, suppose f(™ has the desired form. We will show f"*t1 does as well.
Consider an arbitrary term of the summation
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so h'(x) has the desired form since in each term p; ;’s and q}’ S degree increases
by at least one.

Finally, to show that the derivative is 0 at 0 and 1, we show that the limit of
each term is 0 at 0 and 1. To show this we begin by observing
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Thus, since the exponential in e T3 grows faster than any polynomial of
fixed degree as  — 0 or £ — 1, we must have (") (0) = f(™(1) = 0. Hence,
the function is smooth. O

Exercise 1.2 (Rudin 5.4). If
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where the Cy, ..., C, are real constants, prove that the equation

Co+Ciz+---+ C’n_lxn_l +Crx" =0
has at least 1 real root between 0 and 1.

Proof. Let F(z) = Coz + G2+ + nc—flm"“. First, observe that F'(z) =
Co+ Ciz + -+ Cp_12™t + Cpa™ = 0. Also, observe that F(0) = 0 and
F(1) = 0 so by the mean-value theorem, there is some ¢ € (0,1) such that

0= w = F’(¢). Thus, the polynomial has a zero in (0, 1), as desired. O

Exercise 1.3 (Rudin 5.8). Suppose that f’ is continuous on [a,b] and that
€ > 0. Prove that there exists § > 0 such

f(t) = f(z)
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Proof. Let ¢ > 0 be arbitrary. Since f’ is continuous there is some & > 0
such that if |t — x| < 4, then |f'(t) — f'(z)] < e. We claim that this same ¢
f)—f(x)

satisfies the condition. Consider ~~—-= and suppose |t — x| < J. First, since

t € (x — 6,z + ), by the mean value theorem there is some t' € (x — 6,z + 9)

such that w = f'(¢). Further, since |x — t/| < §, by the continuity of

f'(z) and choice of ¢, it follows that | f'(t) — f'(z)| < € so |W —f(x)] <e,
as desired. O

Exercise 1.4 (Rudin 5.18). Suppose that f is a real function on [a,b], n is a
positive integer, and f("~1) exists for every t € [a,b]. Let o, 3, and P by as in
Taylor’s Theorem (Rudin Thm 5.15). Define
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for t € [a,b], t # B, differentiate
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n — 1 times at ¢t = «, and derive the following version of Taylor’s Theorem:
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Proof. Fix, arbitrary «, 3, and f. We will proceed by induction on n.
For n =1, We have
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Now, suppose the statement holds for all m < n and consider
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Note that the n — lrst derivative of f(t) — f(8) = (t — 5)Q(t) is
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so we have
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where the last equality follows from the inductive hypothesis. O

Exercise 1.5 (Rudin 5.22). Suppose that f is a real differentiable function on
(—00,00). Call z a fixed point of f if f(z) ==z

(a) If f is differentiable and f’(¢) # 1 for every real ¢, prove that f has at
most one fixed point.

(b) Show that the function defined by

J)y=t+@1—e)
has no fixed point, although, 0 < f'(¢) < 1 for all real ¢.

(c) However, if there is a constant A < 1 such that |f/(t)| < A for all real ¢,
prove that a fixed point x of f exists, and that z = lim x,, where x; is an
real number and

Tpy1 = f(71)

forn=1,2,3,...,
Proof.

(a) Suppose f’(t) # 1 for all real t and f had more than 1 fixed point. Consider
fixed points x1,z2 and observe that by the mean value theorem, there
must be some ¢ € (—00,00) such that f/(c) = {EU=f@2) _ za=zz _
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contradicting our assumption.
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Observe that if z is a fixed point, we must have f(z) =z sozx =z + (1 —
e®)~! 50 (1 —e®)~! = 0 which is impossible so f has no fixed points.

Now, consider the sequence (z,) as defined above. We will show the
sequence is cauchy and hence convergent. First, observe that for arbitrary
N, 2y — @] < A oy — @l

To see this, observe that ‘lx”_x"“‘ = W)@l — | f7(0)] < A for

Tp—1—Tn | [Zn—1—Tn]

some ¢ by the mean value theorem. Hence, repeated applications of this
gives the desired inequality.
Now, observe that for n < m
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Since |A| < 1, |A|™ — 0 so it can be made arbitrarily small so the series
is Cauchy and hence convergent.

Finally, we will show x = lim z,, is a fixed point. Since f is differentiable,
it must be continuous so for all € > 0 there is some § > 0 such that
if |t —x <4, |f(t) — f(x)] < &/2. Since z, — z, there is some N
such that for all n > N, | — z,| < min(d,e/2). Now, for all such n,
& — 2l < 650 | () — £(z)] = |F(2) — ns1] < /2. Hence, |f(z) — 2| <
|f(x) — xpt1| + |xne1 — x| < e. Thus, since € was arbitrary, we must have
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