MATH 104 HW9

Jad Damaj

April 15, 2022

1 Hw 9

Exercise 1.1. Construct a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=0$ for $x \leq 0$ and $f(x)=1$ for $x \geq 1$, and $f(x) \in[0,1]$ when $x \in(0,1)$
Proof. Consider the function given by $f(x)=\left\{\begin{array}{ll}0 & x \leq 0 \\ \frac{1}{1+e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}} & 0<x<1 \\ 1 & x \geq 1\end{array}\right.$.
We claim that $f(x)$ satisfies the desired conditions.
First, we show that for each n,

$$
f^{(n)}(x)=\sum_{j=1}^{n} \sum_{k=1}^{j} \frac{(-1)^{j-1}\left(e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{k}}{\left(1+e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{j}}\left(p_{j, k}\left(\frac{1}{x}\right)+q_{j, k}\left(\frac{1}{x-1}\right)\right)
$$

where each $p_{j, k}, q_{j, k}$ are polynomials with degree at least n.
For $n=1$, observe that

$$
f^{\prime}(x)=\frac{-e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}}{1+e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}}\left(\frac{-1}{2 x}+\frac{-1}{2(x-1)}\right)
$$

Now, suppose $f^{(n)}$ has the desired form. We will show $f^{(n+1)}$ does as well. Consider an arbitrary term of the summation

$$
h(x)=\frac{(-1)^{j-1}\left(e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{k}}{\left(1+e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{j}}\left(p_{j, k}\left(\frac{1}{x}\right)+q_{j, k}\left(\frac{1}{x-1}\right)\right)
$$

Observe that

$$
\begin{aligned}
h^{\prime}(x)= & \frac{(-1)^{j}\left(e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{k+1}}{\left(1+e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{j+1}}\left(p_{j, k}\left(\frac{1}{x}\right)+q_{j, k}\left(\frac{1}{x-1}\right)\right)\left(-\frac{1}{2 x^{2}}-\frac{1}{2(x-1)^{2}}\right) \\
& +\frac{(-1)^{j-1}\left(e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{k}}{\left(1+e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{j}}\left(p_{j, k}\left(\frac{1}{x}\right)+q_{j, k}\left(\frac{1}{x-1}\right)\right)\left(-\frac{1}{2 x^{2}}-\frac{1}{2(x-1)^{2}}\right) \\
& +\frac{(-1)^{j-1}\left(e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{k}}{\left(1+e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{j}}\left(p_{j, k}^{\prime}\left(\frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right)+q_{j, k}^{\prime}\left(\frac{1}{x-1}\right)\left(-\frac{1}{(x-1)^{2}}\right)\right)
\end{aligned}
$$

so $h^{\prime}(x)$ has the desired form since in each term $p_{j, k}$'s and $q_{j, k}^{\prime} s$ degree increases by at least one.
Finally, to show that the derivative is 0 at 0 and 1 , we show that the limit of each term is 0 at 0 and 1 . To show this we begin by observing
and

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left|\frac{(-1)^{j-1}\left(e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{k}}{\left(1+e^{\left.\frac{1}{2 x}+\frac{1}{2(x-1)}\right)^{j}}\right.}\right| & =\lim _{x \rightarrow 0}\left|\frac{\left(e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{k}}{\left(1+e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{j}}\right| \\
& \leq \lim _{x \rightarrow 0}\left|\frac{\left(1+e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{k}}{\left(1+e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}\right)^{j}}\right| \\
& =\lim _{x \rightarrow 0} \left\lvert\, \frac{1}{\left(\left.1+e^{\left.\frac{1}{2 x}+\frac{1}{2(x-1)}\right)^{j-k}} \right\rvert\,\right.}\right. \\
& =0
\end{aligned}
$$

Thus, since the exponential in $e^{\frac{1}{2 x}+\frac{1}{2(x-1)}}$ grows faster than any polynomial of fixed degree as $x \rightarrow 0$ or $x \rightarrow 1$, we must have $f^{(n)}(0)=f^{(n)}(1)=0$. Hence, the function is smooth.

Exercise 1.2 (Rudin 5.4). If

$$
C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0
$$

where the C_{0}, \ldots, C_{n} are real constants, prove that the equation

$$
C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0
$$

has at least 1 real root between 0 and 1 .
Proof. Let $F(x)=C_{0} x+\frac{C_{1}}{2} x^{2}+\cdots+\frac{C_{n}}{n+1} x^{n+1}$. First, observe that $F^{\prime}(x)=$ $C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0$. Also, observe that $F(0)=0$ and $F(1)=0$ so by the mean-value theorem, there is some $c \in(0,1)$ such that $0=\frac{F(1)-F(0)}{1-0}=F^{\prime}(c)$. Thus, the polynomial has a zero in $(0,1)$, as desired.

Exercise 1.3 (Rudin 5.8). Suppose that f^{\prime} is continuous on $[a, b]$ and that $\varepsilon>0$. Prove that there exists $\delta>0$ such

$$
\left|\frac{f(t)-f(x)}{t-x}-f^{\prime}(x)\right|<\varepsilon
$$

whenever $0 \leq|t-x| \leq \delta, a \leq x \leq b, a \leq t \leq b$.

Proof. Let $\varepsilon>0$ be arbitrary. Since f^{\prime} is continuous there is some $\delta>0$ such that if $|t-x|<\delta$, then $\left|f^{\prime}(t)-f^{\prime}(x)\right|<\varepsilon$. We claim that this same δ satisfies the condition. Consider $\frac{f(t)-f(x)}{t-x}$ and suppose $|t-x|<\delta$. First, since $t \in(x-\delta, x+\delta)$, by the mean value theorem there is some $t^{\prime} \in(x-\delta, x+\delta)$ such that $\frac{f(t)-f(x)}{t-x}=f^{\prime}\left(t^{\prime}\right)$. Further, since $\left|x-t^{\prime}\right|<\delta$, by the continuity of $f^{\prime}(x)$ and choice of δ, it follows that $\left|f^{\prime}(t)-f^{\prime}(x)\right|<\varepsilon$ so $\left|\frac{f(t)-f(x)}{t-x}-f^{\prime}(x)\right|<\varepsilon$, as desired.

Exercise 1.4 (Rudin 5.18). Suppose that f is a real function on $[a, b], n$ is a positive integer, and $f^{(n-1)}$ exists for every $t \in[a, b]$. Let α, β, and P by as in Taylor's Theorem (Rudin Thm 5.15). Define

$$
Q(t)=\frac{f(t)-f(\beta)}{t-\beta}
$$

for $t \in[a, b], t \neq \beta$, differentiate

$$
f(t)-f(\beta)=(t-\beta) Q(t)
$$

$n-1$ times at $t=\alpha$, and derive the following version of Taylor's Theorem:

$$
f(\beta)=P(\beta)+\frac{Q^{n-1}(\alpha)}{(n-1)!}(\beta-\alpha)^{n}
$$

Proof. Fix, arbitrary α, β, and f. We will proceed by induction on n. For $n=1$, We have

$$
P(\beta)=\sum_{k=0}^{0} \frac{f^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k}
$$

and

$$
Q^{(0)}(\alpha)=Q(\alpha)=\frac{f(\alpha)-f(\beta)}{\alpha-\beta}
$$

So

$$
\begin{aligned}
P(\beta)+\frac{Q^{(0)}(\alpha)}{0!}(\beta-\alpha) & =f(\alpha)+\frac{f(\alpha)-f(\beta)}{\alpha-\beta}(\beta-\alpha) \\
& =f(\alpha)+(-1)(f(\alpha)-f(\beta)) \\
& =f(\beta)
\end{aligned}
$$

Now, suppose the statement holds for all $m<n$ and consider

$$
f(\beta)=P(\beta)+\frac{Q^{n-1}(\alpha)}{(n-1)!}(\beta-\alpha)^{n} .
$$

Note that the $n-1$ rst derivative of $f(t)-f(\beta)=(t-\beta) Q(t)$ is

$$
f^{(n-1)}=(n-1) Q^{(n-2)}(t)+(t-\beta) Q^{(n-1)}(t)
$$

so we have

$$
P(\beta)=\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k}
$$

and

$$
Q^{(n-1)}(\alpha)=\frac{f^{(n-1)}(\alpha)-(n-1) Q^{(n-2)}(\alpha)}{\alpha-\beta}
$$

so

$$
\begin{aligned}
& P(\beta)+\frac{Q^{n-1}(\alpha)}{(n-1)!}(\beta-\alpha)^{n}=\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k}+\frac{f^{(n-1)}(\alpha)-(n-1) Q^{(n-2)}(\alpha)}{(\alpha-\beta)(n-1)!}(\beta-\alpha)^{n} \\
& =\sum_{k=0}^{n-2} \frac{f^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k}+\frac{f^{(n-1)}(\alpha)}{(n-1)!}(\beta-\alpha)^{n-1}+\frac{(-1)(\beta-\alpha)^{n-1}}{(n-1)!}\left(f^{(n-1)}(\alpha)-(n-1) Q^{(n-2)}(\alpha)\right) \\
& =\sum_{k=0}^{n-2} \frac{f^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k}+\frac{Q^{(n-2)}(\alpha)}{(n-1)!}(\beta-\alpha)^{n-1}+\frac{f^{(n-1)}(\alpha)}{(n-1)!}(\beta-\alpha)^{n-1}-\frac{f^{(n-1)}(\alpha)}{(n-1)!}(\beta-\alpha)^{n-1} \\
& =\sum_{k=0}^{n-2} \frac{f^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k}+\frac{Q^{(n-2)}(\alpha)}{(n-1)!}(\beta-\alpha)^{n-1} \\
& =f(\beta)
\end{aligned}
$$

where the last equality follows from the inductive hypothesis.
Exercise 1.5 (Rudin 5.22). Suppose that f is a real differentiable function on $(-\infty, \infty)$. Call x a fixed point of f if $f(x)=x$.
(a) If f is differentiable and $f^{\prime}(t) \neq 1$ for every real t, prove that f has at most one fixed point.
(b) Show that the function defined by

$$
f(t)=t+\left(1-e^{t}\right)^{-1}
$$

has no fixed point, although, $0<f^{\prime}(t)<1$ for all real t.
(c) However, if there is a constant $A<1$ such that $\left|f^{\prime}(t)\right| \leq A$ for all real t, prove that a fixed point x of f exists, and that $x=\lim x_{n}$ where x_{1} is an real number and

$$
x_{n+1}=f\left(x_{1}\right)
$$

for $n=1,2,3, \ldots$,
Proof.
(a) Suppose $f^{\prime}(t) \neq 1$ for all real t and f had more than 1 fixed point. Consider fixed points x_{1}, x_{2} and observe that by the mean value theorem, there must be some $c \in(-\infty, \infty)$ such that $f^{\prime}(c)=\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}=\frac{x_{1}-x_{2}}{x_{1}-x_{2}}=1$, contradicting our assumption.
(b) Observe that if x is a fixed point, we must have $f(x)=x$ so $x=x+(1-$ $\left.e^{x}\right)^{-1}$ so $\left(1-e^{x}\right)^{-1}=0$ which is impossible so f has no fixed points.
(c) Now, consider the sequence $\left(x_{n}\right)$ as defined above. We will show the sequence is cauchy and hence convergent. First, observe that for arbitrary $n,\left|x_{n}-x_{n+1}\right| \leq|A|^{n-1}\left|x_{1}-x_{2}\right|$.
To see this, observe that $\frac{\left|x_{n}-x_{n+1}\right|}{\left|x_{n-1}-x_{n}\right|}=\frac{\left|f\left(x_{n-1}\right)-f\left(x_{n}\right)\right|}{\left|x_{n-1}-x_{n}\right|}=\left|f^{\prime}(c)\right| \leq A$ for some c by the mean value theorem. Hence, repeated applications of this gives the desired inequality. Now, observe that for $n<m$

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & \leq\left|x_{n}-x_{n+1}\right|+\cdots+\left|x_{m-1}-x_{m}\right| \\
& \leq|A|^{n}\left|x_{1}-x_{2}\right|+\cdots+|A|^{m}\left|x_{1}-x_{2}\right| \\
& \leq \frac{|A|^{n}}{1-|A|}\left|x_{1}-x_{2}\right|
\end{aligned}
$$

Since $|A|<1,|A|^{n} \rightarrow 0$ so it can be made arbitrarily small so the series is Cauchy and hence convergent.
Finally, we will show $x=\lim x_{n}$ is a fixed point. Since f is differentiable, it must be continuous so for all $\varepsilon>0$ there is some $\delta>0$ such that if $|t-x|<\delta,|f(t)-f(x)|<\varepsilon / 2$. Since $x_{n} \rightarrow x$, there is some N such that for all $n>N,\left|x-x_{n}\right|<\min (\delta, \varepsilon / 2)$. Now, for all such n, $\left|x-x_{n}\right|<\delta$ so $\left|f(x)-f\left(x_{n}\right)\right|=\left|f(x)-x_{n+1}\right|<\varepsilon / 2$. Hence, $|f(x)-x| \leq$ $\left|f(x)-x_{n+1}\right|+\left|x_{n+1}-x\right|<\varepsilon$. Thus, since ε was arbitrary, we must have $f(x)=x$.

