HW3_104 Jill zheng 02/09/2022
\# 0,6 a) $\because\left|\delta_{n+1}-s_{n}\right|<2^{-n}$ for all $n \in$ 芢
To show $\left\{S_{n}\right\}$ is Canthy sequence. fir any $\varepsilon>0$, need to find and with $m>n>N$, to get $\left|S_{m}-S_{n}\right|<\varepsilon$

$$
\begin{aligned}
\left|s_{m}-s_{1}\right| & =\left|s_{m-} s_{m-1}+s_{m-1}-s_{m-2} \ldots s_{n}\right| \\
& \leq\left|s_{m-} s_{m-1}\right|+\left|s_{m}+-s_{n-2}\right| \\
& \ldots\left|s_{n+1}-s_{n}\right| \\
& \leq{ }_{2}{ }^{m-1}+\frac{1}{2}^{m-2}+\frac{1}{2}^{n} \\
& =\left(\frac{1}{2}\right)^{n}\left(1+\frac{1}{2}+\frac{1}{4} \ldots \frac{1}{2}{ }^{m-n-1}\right) \\
& =\left(\frac{1}{2}\right)^{n}\left(\frac{1-\left(\frac{1}{2}\right)^{m-n}}{\sqrt{2}}\right) \\
& =\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{2}\right)^{m} \\
& =\frac{1}{2} \frac{1}{2}-\frac{1}{2} \\
& \left.<\left(\frac{1}{2}\right)^{n-1}\right)^{m-1}
\end{aligned}
$$

Then we need

$$
\begin{aligned}
\left|S_{m}-S_{n}\right| & <\left(\frac{1}{2}\right)^{n-1}<\varepsilon \\
2^{1-n} & <\varepsilon \\
\log _{2} \varepsilon & >1-n \\
n & >1-\log _{2} \varepsilon
\end{aligned}
$$

for any $\varepsilon \geq 0$,

$$
\text { We canfint, } N \stackrel{F}{\geqslant} \log _{2} \varepsilon \text { to }
$$

So that $\left(\delta_{n}-S_{n} \mid<\varepsilon\right.$
$\Rightarrow\left\{S_{n}\right\rangle \geqslant$ cauchy sequence
$\Rightarrow\left\{S_{n}\right\} \imath>$ Convergent
b)

$$
\begin{aligned}
\left|S_{n+1}-S_{n}\right| & <\frac{1}{n} \text { for all } n \in / b \\
S_{m}-S_{n} \mid & =\left|S_{m}-S_{m-1}+S_{m-1}-S_{m-2}-S_{n}\right| \\
& \leq \frac{1}{\sqrt{n-1}}+\frac{1}{c n-2}+\ldots \frac{1}{2}+1
\end{aligned}
$$

Consider the sequenee

$$
C_{n}=\frac{1}{n-1}
$$

with indegral test

$$
\begin{aligned}
& \lim a_{n}=\lim _{n \rightarrow \infty}(\ln (n-1) \pm \infty \\
\Rightarrow & !\nexists N \quad \text { s.t } m>n>N, \text { tmp }(i, e l) \\
& \left(S_{m}-\operatorname{Sn} l<\varepsilon\right.
\end{aligned}
$$

\# For $a_{n}=(-1)^{n}$
11.2
(a) subsequence can be

$$
\{1,1,1,1,1,\}
$$

(w) $\{1,1,1,1,1\}$
subbequeract

$$
\{-1,-1, \ldots . .-1\}
$$

The the set of subsiquace is
c) $\{1,-1\}$
let $S=\{1,-1\}$

$$
\begin{aligned}
\Rightarrow \limsup S_{n} & =\operatorname{Sup} S=1 \\
\text { liming } S_{n} & =\operatorname{Inf} S=-1
\end{aligned}
$$

d) Since $\sup S \neq 2 \mathrm{nf} S$
$\Rightarrow\left\{G_{n}\right\}$ diverge.
$\left.\rho_{1}\right)-1<a_{n}<1$, bounded

For $b_{n}=\frac{1}{n}$
(C) $\left\{\frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}\right\}$ is as menotone
(b) for all subsequence, the subrequeca limit is 0 .
\Rightarrow Set of subsequant is $\{0\}$
(c) Liminf $n=$ limsdop $b_{n}=0$.
(d) converge to $0, \lim _{2} b_{n}=0$
(B)

$$
1 \geqslant 6 n>0
$$

For $C_{n}=n^{2}$
(G) $\left\{4,9,16 \ldots(n-1)^{2}, n^{2}\right\}$
(b) $+\infty$
(C) $+\infty,+\infty$
(d) diverge to to
(e) Lower bounded but not upper

$$
\begin{aligned}
& \text { For } d_{n}=\frac{6 n+4}{7 n-3} \\
& \begin{aligned}
d_{n}=\frac{6 n+4}{7 n-3} & =\frac{\frac{6}{7}(7 n-3)+4-\frac{18}{7}}{7 n-3} \\
& =\frac{6}{7}+\frac{10}{7 n-2}
\end{aligned}
\end{aligned}
$$

a) $\left\{\frac{16}{11}, \frac{22}{18} \ldots \frac{b n+4}{7 n-3}\right\}$ maitane decreasing
b) $\frac{6}{7}$
c) Ciminf $=\operatorname{lissup}=\lim C_{n}=\frac{6}{7}$
d) converge to $\frac{6}{7}$
e) $\frac{6}{7}<\ln \leq \frac{10}{4}$

Fon
11.3
a) $\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\}$.
b) $\left\{1, \frac{1}{2},-\frac{1}{2},-1\right\}$
C) liming $=-1$

$$
\operatorname{cunsup}=1
$$

d) divergent
e) $-\left(\leq S_{n} \leq 1\right.$

For $t_{n}=\frac{3}{4 n+1}$
a) $\left\{\frac{3}{9}, \frac{3}{13}, \frac{3}{17} \ldots \frac{3}{4 n+1}\right\}$
montine decreasily
b) $\{0\}$
c) liming $=\limsup =0$
d) Converge to 0
e) $\frac{3}{5} \geqslant \frac{5}{5 n}>0$

For $U_{n}=\left(-\frac{1}{2}\right)^{n} \quad\left\{-\frac{1}{2}, \frac{1}{4},-\hat{8}, \times \frac{1}{6}\right.$
a)

$$
\begin{aligned}
& =(-1)^{n} \cdot \frac{1}{2} n^{1} \\
& \left.\left.-\frac{1}{2},-\frac{1}{8},-\frac{1}{32} \cdots\right\}^{-\left(\frac{1}{2}\right)^{2 k-1}}\right\} \\
& \left\{\frac{1}{4},\left.\frac{1}{16} \ldots\left(\frac{1}{2}\right)^{2 k}\right|_{k \in N}\right.
\end{aligned}
$$

b) $\{0\}$
c) $\operatorname{limin} f=\operatorname{ldm} \sin =0=\lim U_{n}$
d) converge to o
e) $-\frac{1}{2} \leq U_{n} \leq \frac{1}{4}$

For $V_{n}=(-1)^{n}+\frac{1}{n}$

$$
\left\{0, \frac{1}{2},-1+\frac{1}{3}, \frac{1}{4}, \frac{-4}{5}, \ldots\right\}
$$

(a) $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6} \ldots \frac{1}{2 k}\right\}$

Monotone deereastry
(b) $\{-1,0\}$
c) Laminf $=-1, \quad$ limsup $=0$
d) diverge to $+\infty$.
e) $<\ln _{n} \leqslant \frac{1}{2}$.
\#11.5
(a) $S=[0,1]$
(b)

$$
\begin{aligned}
& \operatorname{consup} q_{n}=1 \\
& \operatorname{con} \inf q_{n}=0 .
\end{aligned}
$$

Discussion about limsup.
(1) Let ξ be the sect of all subequen of limit of $\left\{s_{n}\right\}$.
then sups is the biggest element of
(2) Limsup is defined as the sup of the "Very tail of this
sequence.
(3) $\limsup S_{n}=\sup S$.
(4) As the defintion of limsup

$$
\lim _{\operatorname{supp}_{n}=\lim _{V \rightarrow A} \sup \left\{S_{n}: n>N\right\}}
$$

$$
\begin{equation*}
a_{1}, a_{2} \ldots a_{3} \tag{3}
\end{equation*}
$$

$\left\{S_{n}: n>N\right\}$ is in the circle of $\left|S_{n}-\delta\right|<\varepsilon$, wherg is cansn. \Rightarrow aimsup is the sup of the set of the sery tail of the sequerce.

