proof: " \Rightarrow "
Since $\left(S_{n}\right)$ is bounded,

$$
\begin{aligned}
& \Rightarrow \quad \mid S_{n} \notin M, \forall N>0, \forall n>N . \\
& \Rightarrow \quad{ }_{M>0} \quad
\end{aligned}
$$

Then $\forall \varepsilon>0$

$$
\begin{array}{ll}
\text { hen } \forall \varepsilon>0 & M \in R \\
\left|S_{n}\right| \leq M+\varepsilon & M>0
\end{array}
$$

\Rightarrow For any $k>0, \forall n>N$, let $k=M$

$$
\left(S_{n}\right) \leq M
$$

$\Rightarrow \operatorname{lin} \sup \left|S_{n}\right| \neq+\infty$
$E "$
$\quad \limsup \left(S_{n}\right)<+\infty$
Let assume li sup $\left|S_{n}\right|=L, L$
$\Rightarrow \forall \varepsilon>0, \exists N>0$, for an $n>N$

$$
\begin{aligned}
& \left|\left|S_{n}\right|-L\right|<\varepsilon \\
& \Rightarrow a\left|S_{n}\right|<L+\varepsilon
\end{aligned}
$$

$\left.a \sin 0<1 s_{A}\right]$
$\Rightarrow\left(\delta_{n}\right)$ is bounded. prow

$$
\frac{1}{n}, 1-\frac{1}{n}
$$

$$
n \sigma_{n}=s_{1}+s_{2}+\ldots S_{n}
$$

12.12 Let $\left(s_{n}\right)$ be a sequence of nonnegative numbers, and for each n define
(a) show $\sup \left\{\sigma_{n}: n>M\right\} \leq \sup \left(G_{\varepsilon_{n}} n>N\right.$

$$
\begin{aligned}
& \lim \inf s_{n} \leq \lim \inf \sigma_{n} \leq \lim \sup \sigma_{n} \leq \lim \sup s_{n} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) Give an example where } \lim \sigma_{n} \text { exists, but } \lim s_{n} \text { does not exist. }
\end{aligned}
$$

a) Since clearly cindas $n \leq \operatorname{cnsup} s_{n}$ and unzuf $\sigma_{n} \leq \ln \sup \sigma_{n}$
just need to show (1) Caninfon $\geqslant \ln$ ing son
(2) $\limsup S_{n} \geqslant \operatorname{Gn} \sup G_{n}$

For (2) Let $n>M>N$

$$
\begin{aligned}
& \Rightarrow \sigma_{n}=\frac{1}{n}\left(S_{1}+S_{2} \ldots S_{N}+S_{N+1}+\ldots S_{n}\right) \\
& =\frac{1}{n}\left(S_{1}+S_{2} \ldots S_{N}\right)+\frac{1}{n}\left(S_{W H 1} \ldots S_{n}\right) \\
& \text { Since } \frac{1}{n}\left(S_{N+1}+\ldots . S_{n}\right)<\frac{1}{n-N}\left(S_{i v+1}^{+} \ldots+S_{n}\right) \\
& <\frac{1}{n-N} \cdot(n-N) \cdot \sup \{\sin ; n \geqslant N\} \\
& \bar{F} \sup \left\{s_{n}: n>N\right\} \text { * }
\end{aligned}
$$

and since $\frac{1}{n}\left(S_{1}+S_{2} \ldots+S_{N}\right)<\frac{1}{n}\left(S_{1}+S_{2} \ldots S_{N}\right)$
With * and *N
we get $s_{\text {sup }} s_{n} \left\lvert\, \frac{k}{\leqslant} \frac{1}{M}\left(s_{1} \ldots+s_{n}\right)+\sup \left\{s_{n}: n>N\right\}\right.$
Then when $N \rightarrow+\infty, \rightarrow M \rightarrow+\infty, \frac{1}{M} \rightarrow 0$
$\operatorname{lmsup} G_{n} \leqslant 0+\operatorname{lonsup} S_{n}$ proved.

Then for (1) Giming $\sigma_{n} \geq$ Uninf su
Since for every seq,$\left\{S_{n}\right\}$

$$
\begin{aligned}
& \Rightarrow \text { Gaxing } S_{1}=-\operatorname{lom} \sup \left(-S_{n}\right) \\
& \Rightarrow\left\{\begin{array}{l}
\text { laning } \sigma_{n}=-\ln \sup \left(-\sigma_{n}\right) \\
\text { cimint } S_{n}=-\operatorname{lininf}\left(-S_{n}\right)
\end{array}\right.
\end{aligned}
$$

log in to
Need to show $\operatorname{lomsup}\left(-6_{n}\right) \leq \operatorname{lon} \sup \left(-S_{n}\right)$ $-6_{n}=+\frac{1}{n}\left(-\bar{s}_{1}+S_{2}+t_{1}=S_{N}\right)+\frac{1}{n} \cdot\left(-S_{N+1}-S_{N+2}-S_{n}\right)$

$$
\geqslant+\frac{1}{m}\left(E S_{1}+S_{2} \ldots S_{0}\right)+\sup \left\{-S_{n}: n \geqslant N\right\}
$$

b) Since limsin elist.

$$
\Rightarrow \operatorname{Cimsup} S_{n}=\text { Cuninf } S_{n}
$$

\Rightarrow Hhe resclt fuon part a) becorsue
 $\Rightarrow \operatorname{lan} \sigma_{n}$ exist and $\operatorname{lan} \sigma_{n}=\operatorname{lin} \sigma_{n}$.
c) Let $\left.s_{n}=(-1)^{n} t\right)$ Then uninf $\delta_{y} 0$ lunsupsin $=2$
$\Rightarrow \ln s_{n}$ not exist

$$
\text { Then } \begin{aligned}
\sigma_{n} & = \begin{cases}\theta \mid & \text { of } n \text { is even } \\
1-\frac{1}{n} & \text { if } n \text { is odd }\end{cases} \\
& \Rightarrow \operatorname{cin} \sigma_{n}=\text { lansup }=\lim \text { inf }=1
\end{aligned}
$$

14.2 Repeat Exercise 14.1 for the following.
(a) $\sum \frac{n-1}{n^{2}}$
(b) $\sum(-1)^{n}$
(c) $\sum \frac{3 n}{n_{3}^{3}}$
(d) $\sum \frac{n^{n}}{3^{n}}$
(e) $\sum \frac{n}{n!}$
(f) $\sum \frac{1}{n^{n}}$
(g) $\sum \frac{n}{2^{n}}$
a) $\sum \frac{n-1}{n^{2}}$

Since $\sum \frac{n-1}{n^{2}} \geq \sum \frac{n-\frac{n}{2}}{n^{2}}=\sum \frac{\frac{n}{2}}{n^{2}}=\sum \frac{1}{2 n}$
$\because \sum \frac{1}{2 n}$ is divegont.
$\Rightarrow \sum \frac{n-1}{n^{2}}$ is divergent.
b) $(-1)^{n} \quad$ since $\lim _{n \rightarrow 0}(-1)^{n} \neq 0$
\Rightarrow divergent
c)

$$
\begin{aligned}
\sum \frac{3 n}{n^{2}}=\sum \frac{3}{n^{2}} \quad \int_{1}^{\infty} \frac{3}{x^{2}} & =-\left.3 x^{-1}\right|_{1} ^{\infty} \\
& =0-(-3)=3
\end{aligned}
$$

\Rightarrow by intergibal test convergent os 3

$$
\begin{aligned}
& d) \sum \frac{n^{3}}{3^{n}} \\
& \lim \left|\frac{(n+1)^{3}}{3^{n+1}}\right| \\
& \left|\frac{n^{3}}{3^{n}}\right| \\
& \Rightarrow \ln \left[\frac{(n+1)^{3}}{3(n)^{3}}\left|=\frac{1}{3}\left(\frac{n+1}{n}\right)^{3}\right|=\frac{1}{3}<1\right. \\
& \Rightarrow \text { convergent }
\end{aligned}
$$

e) $\frac{-n^{2}}{n!}$

$$
\lim \left|\frac{\frac{(n+1)^{3}}{(n+1)}}{\frac{n^{3}}{n!}}\right|=\ln \left|\frac{1}{(n+t)}, \frac{(n+1)^{3}}{n^{3}}\right|=0
$$

converges

$$
\begin{aligned}
\text { f) } \sum \frac{1}{n^{\prime}} & =\sum\left(\frac{1}{n}\right)^{n} \\
\ln \left|\left(\frac{1}{n}\right)^{n}\right|^{\frac{1}{n}}=\operatorname{Ln} \frac{1}{n} & =0 \\
& \Rightarrow \text { convagut }
\end{aligned}
$$

(g) $\sum \frac{n}{2^{n}}$
$\operatorname{lar}\left|\frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^{n}}}\right|=\operatorname{la}\left|\frac{1}{2} \cdot \frac{n+1}{n}\right|=\frac{1}{2}$, consegent
14.10 Find a series $\sum a_{n}$ which diverges by the Root Test but for which the Ratio Test gives no information. Compare Example 8.

Let $\int \sum_{n+\infty}^{\infty} 2^{(-1)^{n}+n}=\sum a_{n}$
with root test

$$
\left.\lim _{n \rightarrow \infty}\left|2^{(-1)^{n}+n}\right|_{n \rightarrow-1}^{\frac{1}{n}}=\lim ^{(-1)^{n} \cdot \frac{1}{n}+1} \right\rvert\,=2^{1}>1 \text {, diverge }
$$

With Rato Test

$$
\begin{array}{r}
\left\{a_{n}\right]=2,1,8,4,32 \\
\frac{1}{2}<\operatorname{coming}\left(\frac{a_{n+1}}{a_{n}}\right)<1<\operatorname{comsup}\left(\frac{a_{n t 1}}{a_{0}}\right)<8
\end{array}
$$

\Rightarrow with Rats test, give no infurcuats

Rudin
Ch3
a)
6.

$$
\begin{aligned}
a_{n} & =\sqrt{n+1}-\sqrt{n} \\
& =\frac{1}{\sqrt{n+1}+\sqrt{n}}>\frac{1}{2 \sqrt{n+1}}
\end{aligned}
$$

$\because \sum \frac{1}{2 \sqrt{n+1}}$ with intengnal fest
is divergent
$\Rightarrow \sum \sqrt{n+1}-f_{n}$ is dvergent
b)

$$
\begin{aligned}
& \sum \frac{\sqrt{n+1}-\sqrt{n}}{n} \\
& \frac{\sqrt{n+1}-\sqrt{n}}{n}=\frac{1}{n(\sqrt{n+n}+\sqrt{n})}<\frac{1}{2 n \sqrt{n}}=\frac{1}{2} \cdot n^{-\frac{3}{2}}
\end{aligned}
$$

With integrel test for $\sum \frac{1}{2} \cdot n^{-\frac{3}{2}}$
$\sum \frac{1}{2} \cdot n^{-\frac{3}{2}}$ is conerget
$\Rightarrow \sum \frac{\sqrt{n+1}-\sqrt{n}}{n}<\sum \frac{1}{2} n^{-\frac{3}{2}}$ is convegat
c)

$$
\begin{aligned}
& a_{n}=(\sqrt[n]{n}-1)^{n} \\
& \begin{aligned}
\operatorname{Cim}\left(\left.a_{n}\right|^{\frac{1}{n}}\right. & =\lim |\sqrt[n]{n}-1| \\
& =\lim \sqrt[n]{n}-1 \\
& =0 \Rightarrow \text { convengert }
\end{aligned}
\end{aligned}
$$

d) $a_{n}=\frac{1}{1+z^{n}}$ for couplet values of

Ck l 7 . Let $b_{n}=\frac{\sqrt{a_{n}}}{n}$
7. Prove that the convergence of Σa_{n} implies the convergence of

$$
\sum \frac{\sqrt{a_{n}}}{n}
$$

Then radio test if $a_{n} \geq 0$.
if in en $_{3}^{3} a_{1}$ is coneriat.
then

$$
\operatorname{Cin} \frac{\left(a_{n+1} \mid\right.}{\left|n_{n}\right|}<1 \Rightarrow \ln \sqrt{\left.\sqrt{\left(\left.\frac{n_{n}}{2} \right\rvert\,\right.} \right\rvert\,}<1
$$

$$
\Rightarrow \sum<\ln \left|\frac{b_{n+1}}{b_{n}}\right|<1
$$

\Rightarrow proved
11. Suppose $a_{n}>0, s_{n}=a_{1}+\cdots+a_{n}$, and Σa_{n} diverges.
(a) Prove that $\sum \frac{a_{n}}{1+a_{n}}$ diverges.
(b) Prove that

$$
\frac{a_{N+1}}{s_{N+1}}+\cdots+\frac{a_{N+k}}{s_{N+k}} \geq 1-\frac{s_{N}}{s_{N+k}}
$$

and deduce that $\sum \frac{a_{n}}{s_{n}}$ diverges.
(c) Prove that

$$
\frac{a_{n}}{s_{n}^{2}} \leq \frac{1}{s_{n-1}}-\frac{1}{s_{n}}
$$

and deduce that $\sum \frac{a_{n}}{s_{n}^{2}}$ converges.
(d) What can be said about

$$
\Sigma \frac{a_{n}}{1+n a_{n}} \text { and } \Sigma \frac{a_{n}}{1+n^{2} a_{n}} ?
$$

a) $\frac{a_{n}}{1+a_{n}}=1-\frac{1}{1+a_{n}} \quad$ since $a_{n}>0$.

$$
\Rightarrow 1-\frac{1}{1 \tan }>0
$$

$\Rightarrow \sum \frac{a_{n}}{1 \tan }$ dirage
b) right side

$$
\begin{aligned}
1-\frac{s_{N}}{s_{N+1}} & =\frac{a_{N+1}+a_{N+2} \ldots a_{N+k}}{s_{N+K}} \\
& =\frac{a_{N+1}}{s_{N+k}}+\frac{a_{N+1}}{s_{N+K}} \ldots \frac{a_{N+k}}{s_{N+k}}
\end{aligned}
$$

Since $a_{n}>0$ and $s_{n}=\sum a_{n}$
\Rightarrow clearly $S_{n+1}>S_{n}$ for any n

$$
\begin{aligned}
& \Rightarrow s_{N+k}<s_{N+k-1}>\ldots>s_{N+2}>s_{N+1} \\
& \Rightarrow \frac{a_{N+1}}{s_{N+k}}+\frac{a_{N+2}}{s_{N+k}} \cdots \frac{a_{N+k}}{s_{N+k}}+\frac{a_{N}}{s_{N+K}} \\
& \leq \frac{a_{N+1}}{s_{N+1}}+\frac{a_{N+2}}{s_{N+2}} \cdots \frac{a_{N+k}}{s_{N+1}} \\
& =\text { get when } \\
& =1
\end{aligned}
$$

Then proved!
With this result, when $N=01, C_{n}=\frac{a_{n}}{c_{1}}$
left side vs

$$
\Sigma C_{n} \geqslant 1-
$$

right side is

