13.3 Let B be the set of all bounded sequences $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots\right)$, and define
$d(\boldsymbol{x}, \boldsymbol{y})=\sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \ldots\right\}$.
(a) Show d is a metric for B.
(b) Does $d^{*}(\boldsymbol{x}, \boldsymbol{y})=\sum_{j=1}^{\infty}\left|x_{j}-y_{j}\right|$ define a metric for B ?
(a)

$$
\begin{aligned}
d(x, x) & =\sup \left\{\left|x_{j}-x_{j}\right|: j=122\right\} \\
& =\sup \{0\}=0 \\
d(x, y) & =\sup \left\{\left|x_{j}-y_{i}\right|\right\} \\
& \left.=\sup \left\{\mid y_{j}-x_{j}\right)\right\} \\
& =d\left(y_{j}, x\right) \\
d(x, y) & +d(y, z)=\sup \left\{\left|x_{j}-y_{j}\right|\right\}+ \\
& \sup \left\{\left|y_{j}-z_{j}\right|\right\}
\end{aligned}
$$

Let $\sup \left\{\left(x_{j}-y_{j}\right)=\left(x_{k}-y_{k}\right)\right.$ for some and $\left.\sup \left(\mid y_{1}-z_{i j}\right)\right]=\left|x_{p}-z_{p}\right|$ (c, $\left., 1,2,3,\right\}$

$$
\sup \left\{\left|x_{j}-z_{j}\right|\right\}=\left|x_{m}-z_{n_{i}}\right|
$$

$$
\begin{aligned}
& \Rightarrow \sup \left\{x_{j}-y_{i} \mid\right\}+\sup \left\{\left|y_{j}-z_{j}\right|\right\} \\
& \Rightarrow=\left|x_{k}-y_{k} j+\left|y_{p}-z_{p}\right|\right. \\
& \geqslant\left(x_{m}-y_{m}\left|+\left|y_{m}-z_{m}\right| \geqslant\left|x_{m}-z_{m}\right|\right.\right. \\
& \Rightarrow d(x, y)+d\left(y_{0}, z\right) \geqslant d(x, z)
\end{aligned}
$$

b) clearly $d^{k}(x, y)$ scitisfy $d(x, y)=$
$d(x, x)=0$
$d(x, x) \geq 0$
For $\quad d^{*}(x, y)+d^{*}(y, z) \geq d^{*}(x, z)$

$$
\left.d^{*} \mid x, y\right) e d^{*}(y, z)=\sum_{j=1}^{\infty}\left(\left|x_{j}-y_{j}\right|+\left|\frac{y_{j}}{y_{j}}-z_{j}\right|\right)
$$

\because for every term

$$
\begin{aligned}
&\left.\left|x_{j}-y_{i}\right|+\mid y_{i}-z_{j}\right) \geqslant\left(x_{j}-z_{j}\right) \\
&\left.\Rightarrow \sum\left(\left|x_{j}-y_{i}\right|+\left|y_{j}-z_{j}\right|\right) \geqslant \sum \mid x_{j}-z_{j}\right)
\end{aligned}
$$

\Rightarrow proved
13.5 (a) Verify one of DeMorgan's Laws for sets:
$\bigcap\{S \backslash U: U \in \mathcal{U}\}=S \backslash \bigcup\{U: U \in \mathcal{U}\}$.
(b) Show that the intersection of any collection of closed sets is a

$$
\begin{aligned}
& \text { (a) for } x \in \cap\{\& \backslash u\} \\
& x \in S \cup u_{i} i \in I \\
& \Rightarrow x \notin u_{i} \text { for } i \in I, \\
& \Rightarrow \& x \in\{S / \cup\{u ; u \in \in u\} \\
& \Rightarrow \text { proved }
\end{aligned}
$$

(b) with the result of panticias let $\{u=u \in \mu\}$ be the collection of closed set From a), we can get

$$
\cap\{\quad W: v \in \mathbb{E}\}
$$

$$
=s / U\{s-\mu: u \in \mu\}
$$

Then hence need to shows $s-U\{s-\mu: u \in \mu\}$ is closed
$\because\{u: u \in \mu\}$ is the collection of closed set
$\Rightarrow S s-u=\mu \in \mu\}$ is an openset
$\Rightarrow \cup\{s-\mu l, u \in \mu\}$ is an open set

$$
\Rightarrow S-U\{s-\mu: \mu \in u\} \underset{v e}{ } \text { closed. }
$$

(c) 0

$$
\left(\begin{array}{llll}
a_{1} & a_{2} & a_{3} & y^{a_{n}}
\end{array}\right)
$$

13.7 Show that every open set in \mathbb{R} is the disjoint union of a finite or infinite sequence of open intervals
Need to show for even SCR. where sis open
$S=V u_{i}$ when $\cap u_{i} \cap u_{2}=\phi$
Since S is open u_{J} is open interact
for every $p \in S, \exists B r p) C S$
Since u_{i} is open internal.
Let $u_{i}=\left(a_{i}, a_{i+1}\right)$, for any u_{i}
\Rightarrow IBricpscrera $n=\frac{a_{i n}-a_{i}}{2}$

$$
P=\frac{u_{i=1}}{2}
$$

Clearly for every p, express it as 2
Let $r_{i}=\frac{a_{i+}-a_{1}}{2}$,
$\Rightarrow W_{i}$ is the open set sure

$$
\exists B r_{i}(p)<r_{i}
$$

For " $S_{1} \subseteq S_{2}$

$$
\Rightarrow \exists \text { a seq }\left\{a_{n}\right\} \text { in } S_{1}
$$

let $a_{n}=x$ for $n=1, \ldots \ldots$

$$
\begin{aligned}
& \Rightarrow a_{n} \rightarrow x \\
\Rightarrow & x \in S_{2}
\end{aligned}
$$

\Rightarrow for every $\delta \in S_{F}$,

$$
x \in S_{2}
$$

$$
\begin{aligned}
& \text { Let } x \in S_{1} \quad S_{1}=5 \\
& \exists a \operatorname{seq}\left(p_{n}\right) \text { in } S \text {. } \\
& \text { Sit } P_{n} \rightarrow \theta x \\
& \sim D N) \Rightarrow P_{n} \in B r_{1}(X) \\
& \because S_{2}=\bar{S}_{1}
\end{aligned}
$$

For $S_{2} S_{1} \geq S_{2}$ "
let $x \in S_{2}$

$$
\begin{aligned}
\Rightarrow & \exists\left\{p_{n}\right\} \text { in } s_{1}, \text { s.t } \\
& P_{n} \rightarrow x \\
\Rightarrow & P_{n} \in \operatorname{Br}(X)
\end{aligned}
$$

$$
\begin{aligned}
& \because S_{1}=\bar{s} \\
& \Rightarrow S_{1}\left|\operatorname{m}_{\in x}\right| \exists\left\{a_{n}\right\} \text { in } S, \text { s.t } \\
& \because \quad a_{n} \rightarrow m \\
& \because P_{n} \in S_{1} \Rightarrow \exists\left\{a_{n}\right\} \operatorname{in} S, s_{0} t \\
& \quad a_{n} \rightarrow p_{n}
\end{aligned}
$$

$\Rightarrow G_{n} \in \operatorname{Br}^{\prime}\left(p_{r} r\right.$

$$
\begin{aligned}
& \Rightarrow a_{n} \in B_{r}(X) \\
& \Rightarrow a_{n} \rightarrow X .
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow X \in S_{1} \\
& \Rightarrow S_{1} \geqslant S_{2}
\end{aligned}
$$

Then Above all we get $\delta_{1}=\delta_{2}$
5. Prove that \bar{S} is the intersection of all closed subsets in X that contains S. (you may assume result in 4, namely, \bar{S} is closed)
one of DeMorgan's Laws for sets:

$$
\bigcap\{S \backslash U: U \in \mathcal{U}\}=S \backslash \bigcup\{U: U \in \mathcal{U}\} .
$$

