1. Let $f_n(x)=rac{n+\sin x}{2n+\cos n^2 x}$, show that f_n converges uniformly on $\mathbb R$.

and fore
$$\frac{n+1}{2n-1}$$

2. Let $f(x)=\sum_{n=1}^\infty a_n x^n$. Show that the series is continuous on [-1,1] if $\sum_n |a_n|<\infty$. Prove that $\sum_{n=1}^\infty n^{-2} x^n$ is continuous on [-1,1].

(In general, if one only know that $\sum_n a_n$ and $\sum_n (-1)^n a_n$ converge, then the result still holds, but is harder to prove. See Ross Thm 26.6)

$$\therefore |a_n x^n| \leq |a_n| = M_n$$

3. Show that $f(x) = \sum_n x^n$ represent a continuous function on (-1,1), but the convergence is not uniform. (Hint: to show that f(x) on (-1,1) is continuous, you only need to show that for any 0 < a < 1, we have uniform convergence on [-a,a]. Use Weierstrass M-test.)

Then Need to show that for any
$$0 < a < 1$$
, we have uniform convergence on $[-a,a]$. Use Weierstrass M-lest.)

For any $a \in [a,b]$ Need to show $f(a)$ is continuous on $[-a,a]$.

If $a = [a,b] = [a,b]^n$
 $f(a) = [a,b] = [a,b]$
 $f(a) = [a,b]$
 f

n < log (1-x) &