HW10

Jiayin Lin

1 Question 1

Consider $f(x)=1$ for $x \in \mathbb{Q}$ and $f(x)=-1$ otherwise.
This function is obviously not integrable, but $|f(x)|=1$ is.

2 Question 2

denote

$$
\begin{aligned}
U\left(f^{2}, p\right) & =\sum_{p \in P} f\left(x_{p}\right)^{2} \Delta x_{p} \\
L\left(f^{2}, p\right) & =\sum_{p \in P} f\left(y_{p}\right)^{2} \Delta x_{p}
\end{aligned}
$$

x_{p}, y_{p} are in the interval p

$$
\begin{aligned}
U\left(f^{2}, p\right)-L\left(f^{2}, p\right) & =\sum_{p \in P}\left(f\left(x_{p}\right)^{2}-f\left(y_{p}\right)^{2}\right) \Delta x_{p} \\
& =\sum_{p \in P}\left(f\left(x_{p}\right)-f\left(y_{p}\right)\right)\left(f\left(x_{p}\right)+f\left(y_{p}\right)\right) \Delta x_{p} \\
& \leq \sum_{p \in P}\left(f\left(x_{p}\right)-f\left(y_{p}\right)\right) 2 B \Delta x_{p} \\
& =2 B(U(f, p)-L(f, p))
\end{aligned}
$$

thus f^{2} is obviously integrable because the right side $=0$

3 Question 3

If not, since both are continuous, then $f(x)>g(x)$ without loss of generality.
Then, $\int_{a}^{b} f(x) d x=(b-a) f\left(x_{1}\right)$ and $\int_{a}^{b} g(x) d x=(b-a) g\left(x_{2}\right)$, but then $g\left(x_{2}\right)=f\left(x_{1}\right)$ contradiction.

4 Question 4

$$
\begin{aligned}
& \quad \int_{0}^{\frac{\pi}{2}} x d \sin x \\
& =\int_{0}^{\frac{\pi}{2}} x \cos x d x \\
& =\cos \frac{\pi}{2}-\cos 0+\frac{\pi}{2} \sin \frac{\pi}{2}-0=\frac{\pi}{2}-1 \\
& \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x d \sin x \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x d x \\
& =\cos \frac{\pi}{2}-\cos \left(-\frac{\pi}{2}\right)+\frac{\pi}{2} \sin \frac{\pi}{2}-\left(-\frac{\pi}{2}\right) \sin \left(-\frac{\pi}{2}\right)=0
\end{aligned}
$$

5 Question 5

If not, since f is continuous then $f(x)>\frac{\int_{a}^{b} f(x) d F}{F(b)-F(a)}$ without loss of generality.
Since f is integrable, then

$$
\begin{aligned}
A=\int_{a}^{b} f(x) d F & =\sum_{0}^{n} f\left(x_{k}\right)\left(F\left(x_{k}^{+}\right)-F\left(x_{k}^{-}\right)\right)+\sum_{1}^{n} M\left(f, x_{k-1}, x_{k}\right)\left(F\left(x_{k}^{-}\right)-F\left(x_{k-1}^{+}\right)\right) \\
& >\sum_{0}^{n} \frac{A}{F(b)-F(a)}\left(F\left(x_{k}^{+}\right)-F\left(x_{k}^{-}\right)\right)+\sum_{1}^{n} \frac{A}{F(b)-F(a)}\left(F\left(x_{k}^{-}\right)-F\left(x_{k-1}^{+}\right)\right) \\
& >\frac{A\left(F\left(x_{n}^{+}\right)-F\left(x_{0}^{-}\right)\right)}{F(b)-F(a)}=A
\end{aligned}
$$

so we have $\mathrm{A}_{¡} \mathrm{~A}$ as contradiction.

