Quiz 1

Jiayin Lin

1 Question 1

consider

$$
f(x)=e^{\frac{1}{x(x-1)}} \text { for } x \in(0,1)
$$

we have

$$
f^{\prime}(x)=f(x) \frac{(2 x-1)}{\left(x-x^{2}\right)^{2}}
$$

and

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-0}{x}=0 \text { and same for } f^{\prime}(1)
$$

induction by supoose

$$
f^{(n)}(x)=f(x) Q_{n}(x) \text { for some rational function } Q_{n}(x)
$$

and

$$
\begin{aligned}
& f^{(n)}(0)=0 \\
& f^{(n)}(1)=0
\end{aligned}
$$

find the $\mathrm{n}+1$ derivative

$$
\begin{aligned}
f^{(n+1)}(x) & =f^{\prime}(x) Q_{n}(x)+f(x) Q_{n}^{\prime}(x) \\
& =f(x) Q_{1}(x) Q_{n}(x)+f(x) Q_{n}^{\prime}(x) \\
& =f(x) Q_{(n+1)}(x)
\end{aligned}
$$

for

$$
Q_{(n+1)}(x)=Q_{1}(x) Q_{n}(x)+Q_{n} \prime(x)
$$

finish the first induction, and now look at endpoints

$$
\begin{aligned}
f^{(n+1)}(0) & =\lim _{x \rightarrow 0}\left(f^{(n)}(x)-f^{(n)}(0)\right) \frac{1}{x} \\
& =\lim _{x \rightarrow 0^{+}}\left(f^{(n)}(x)-f^{(n)}(0)\right) \frac{1}{x} \\
& =\lim _{x \rightarrow 0^{+}} e^{-\frac{1}{x(x-1)}} \frac{Q_{n}(x)}{x} \\
& =0 \text { by L'hopital rule }
\end{aligned}
$$

the same reason for $f^{(n+1)}(1)$

Now we let this function to be g

$$
g(x)=\frac{\int_{0}^{x} f(t) d t}{\int_{0}^{1} f(t) d t} \text { for } x \in(0,1), 0 \text { for } x \leq 0,1 \text { for } x \geq 1
$$

This integral obviously will satisfy the requirement by Newton-Lebeiz rule

2 Question 2

$$
\text { let } f(x)=c_{0} x+\frac{c_{1}}{2} x^{2}+\cdots+\frac{c_{n}}{n+1} x^{n+1}
$$

then f is differentiable and

$$
\begin{aligned}
f(0) & =0 \\
f(1) & =c_{0}+\frac{c_{1}}{2}+\cdots+\frac{c_{n}}{n+1}=0 \\
f^{\prime}(x) & =c_{0}+c_{1} x+\cdots+c_{n} x^{n}
\end{aligned}
$$

so the equation has a real root in $[0,1]$

3 Question 3

by Lagrange Mean Value Theorem

$$
\left|\frac{f(t)-f(x)}{t-x}-f^{\prime}(x)\right|=\left|f^{\prime}(u)-f^{\prime}(x)\right| \text { for } u \in[x, t]
$$

hence

$$
|u-x|<\delta
$$

by continuity it is less than ε

4 Question 4

$$
f(t)-f(\beta)=Q(t)(t-\beta)
$$

differentiate n times

$$
f^{(n)}(t)=Q^{(n)}(t)(t-\beta)+(n) Q^{(n-1)}(t)
$$

induction on a obvious base case $\mathrm{n}=1$

$$
=Q^{(n)}(t)(t-\beta)+\frac{n!(f(\beta)-P(\beta))}{(\beta-t)^{n}}
$$

rearrange

$$
f^{(n)}(t) \frac{(\beta-t)^{n}}{n!}=Q^{(n)}(t)(t-\beta) \frac{(\beta-t)^{n}}{n!}+f(\beta)-P(\beta)
$$

take $t=\alpha$

$$
f(\beta)=P(\beta)+f^{(n)}(t) \frac{(\beta-t)^{n}}{n!}+Q^{(n)}(t) \frac{(\beta-t)^{n+1}}{n!}
$$

finish

5 Question 5

$5.1 \quad$ a
if there are 2 fix points ajb then $\exists c \in[a, b]$ such that

$$
\frac{f(a)-f(b)}{a-b}=f^{\prime}(c)=1
$$

which is contradiction

5.2 b

$$
f^{\prime}(t)=1-\frac{e^{t}}{\left(1+e^{t}\right)^{2}}<1
$$

but

$$
f(t)-t=\frac{1}{\left(1+e^{t}\right)}<0
$$

5.3 c

if not by intermediate value theorem $f(x)>x$ with no loss of generality, but also

$$
f(x)-f(0) \leq A x \text { for } \times \mathrm{x}_{\iota} 0
$$

otherwise contradict $\left|f^{\prime}(x)\right| \leq A$
then we have

$$
A x+f(0)>x
$$

take $x=\frac{f(0)}{1-A}>0$, since $\mathrm{A}_{\mathbf{i}} 1, f(0)>0$ we have $f(0)>f(0)$ contradiction
and also

$$
x_{n+1}-x=f\left(x_{n}\right)-f(x) \leq\left(x_{n}-x\right) A
$$

so the sequence is boudned by a geometric sequence that converge to 0

