Math 104 HW 1

Jonathan Wang

January 29, 2022

19.9

1.1 a

$\lim s_{n}=+\infty \Rightarrow \forall M>0, \exists N_{1}$ s.t. $\forall n>N_{1}, s_{n}>M$
Let $N=\max \left\{N_{0}, N_{1}\right\}$
$\forall n>N, t_{n} \geq s_{n}>M \Rightarrow \lim t_{n}=+\infty$

1.2 b

$\lim t_{n}=-\infty \Rightarrow \forall M<0, \exists N_{1}$ s.t. $\forall n>N_{1}, t_{n}<M$
Let $N=\max \left\{N_{0}, N_{1}\right\}$
$\forall n>N, s_{n} \geq t_{n}<M \Rightarrow \lim s_{n}=-\infty$

1.3 c

Let $\lim s_{n}=s, \lim t_{n}=t$
$\lim \left(t_{n}-s_{n}\right)=t-s \Rightarrow \forall \epsilon>0, \exists N_{1}$ s.t. $\forall n>N_{1},\left|\left(t_{n}-s_{n}\right)-(t-s)\right|<\epsilon$
For the sake of contradiction, assume $s>t$
Let $N=\max \left\{N_{0}, N_{1}\right\}$
$\forall n>N, t_{n}-s_{n} \geq 0$ and $t-s<0$
Thus, $\left(t_{n}-s_{n}\right)-(t-s)>0$
Let $0<\epsilon<\left(t_{n}-s_{n}\right)-(t-s)$.
Then, $\left|\left(t_{n}-s_{n}\right)-(t-s)\right|>\epsilon$. A contradiction is reached.
Thus, $s \leq t$

$2 \quad 9.15$

$$
\begin{aligned}
& \frac{s_{n+1}}{s_{n}}=\frac{\frac{a^{n+1}}{(n+1)!}}{\frac{a}{n!}}=\frac{a}{n+1} \\
& \lim \frac{s_{n+1}}{s_{n}}=0 \\
& \forall \epsilon>0, \exists N \text { s.t. } \forall n>N,\left|\frac{s_{n+1}}{s_{n}}\right|<\epsilon \\
& \text { Let } \epsilon=\gamma<1 \\
& \frac{\left|s_{n+1}\right|}{\left|s_{n}\right|}<\gamma
\end{aligned}
$$

$\left|s_{n+1}\right|<\gamma\left|s_{n}\right| \Rightarrow\left|s_{n}\right|<\gamma\left|s_{n-1}\right|<\gamma^{2}\left|s_{n-2}\right|<\ldots<\gamma^{n-N}\left|s_{N}\right|$
$\lim \gamma^{n-N}\left|s_{N}\right|=\lim \gamma^{n} \gamma^{-N}\left|s_{N}\right|=0$ (because $\gamma<1$)
Since $\left|s_{n}\right| \leq \gamma^{n-N}\left|s_{N}\right|, \lim \left|s_{n}\right| \leq \lim \gamma^{n-N}\left|s_{N}\right|=0$ from 9.9c.
Thus, $\lim s_{n}=0$

$3 \quad 10.7$

Let $s_{1}=\sup S-\frac{1}{m}$ s.t. $m \in \mathbf{N}$ and $s_{1} \in S$. This is possible because by the definition of $\sup , \exists s \in S$ s.t. $s>\sup S-\epsilon$, where $\epsilon>0$.
Define $s_{n}=\sup S-\frac{1}{m+n-1}$. To show that $s_{n} \in S$, for the sake of contradiction assume that $s_{n} \notin S$. We know s_{n} is a monotonically increasing sequence, because $\frac{1}{m+n-1}$ is monotonically decreasing. If $s_{n} \notin S$, then $s_{n} \geq \sup S$ by the definition of sup S being the smallest upper bound for S. This is a contradiction to $s_{n}=\sup S-\frac{1}{m+n-1}<\sup S$
Therefore, $\lim s_{n}=\sup S$.

$\begin{array}{ll}4 & 10.8\end{array}$

WTS: $\forall n, \sigma_{n+1} \geq \sigma_{n}$
$\sigma_{n+1}=\frac{1}{n+1}\left(s_{1}+s_{n}+s_{n+1}\right)=\frac{1}{n+1}\left(\frac{n\left(s_{1}+\ldots+s_{n}\right)}{n}+s_{n+1}\right)=\frac{1}{n+1}\left(n \sigma_{n}+s_{n+1}\right)$
We can show $n s_{n+1}=s_{n+1}+\ldots+s_{n+1} \geq s_{1}+\ldots+s_{n}$ by induction.
Thus, $s_{n+1} \geq \frac{s_{1}+\ldots+s_{n}}{n}=\sigma_{n}$
Thus, $n \sigma_{n}+s_{n+1} \stackrel{n}{\geq} n \sigma_{n}+\sigma_{n} \Rightarrow n \sigma_{n}+s_{n+1} \geq(n+1) \sigma_{n} \Rightarrow \frac{1}{n+1}\left(n \sigma_{n}+s_{n+1}\right)=$ $\sigma_{n+1} \geq \sigma_{n}$

$5 \quad 10.9$

$5.1 \quad$ a

$s_{2}=\left(\frac{1}{2}\right) 1^{2}=\frac{1}{2}$
$s_{3}=\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)^{2}=\frac{1}{6}$
$s_{4}=\left(\frac{3}{4}\right)(16)^{2}=\frac{1}{48}$

5.2 b

WTS: s_{n} is decreasing and bounded, by showing $0<s_{n+1} \leq 1$
Proof by induction:
The above inequality holds for $0<s_{1}=1 \leq 1$ and $0<s_{2}=\frac{1}{2} \leq 1$
Assume it holds for some $n \geq 2$
WTS: $\left(\frac{n}{n+1}\right) s_{n}^{2}<s_{n}$
$n s_{n}^{2}<(n+1) s_{n}$
$n s_{n}<n+1$
$s_{n}<\frac{n+1}{n}=1+\frac{1}{n}$
We know $s_{n} \leq 1<1+\frac{1}{n}$

WTS: $0<s_{n+1}$
$0<\left(\frac{n}{n+1}\right) s_{n}^{2}$
This is true because $n>0$ and $s_{n}^{2}>0$

5.3 c

Let $\lim s_{n}=s$.
s satisfies $n s^{2}=(n+1) s$
$n s^{2}-(n+1) s=0$
$s(n s-n-1)=0$
$s=0$ since $s \neq \frac{n+1}{n}$, because $s_{n}<1 \forall n$

$6 \quad 10.10$

6.1 a

$$
\begin{aligned}
& s_{2}=\frac{1}{3}(1+1)=\frac{2}{3} \\
& s_{3}=\frac{1}{3}\left(\frac{2}{3}+1\right)=\frac{5}{9} \\
& s_{4}=\frac{1}{3}\left(\frac{5}{9}+1\right)=\frac{9}{27}
\end{aligned}
$$

6.2 b

$s_{1}=1>\frac{1}{2}$
Assume $s_{n}>\frac{1}{2}$ for some $n \geq 1$
$s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)=\frac{1}{3} s_{n}+\frac{1}{3}>\frac{1}{3}\left(\frac{1}{2}\right)+\frac{1}{3}=\frac{1}{2}$
6.3 c

WTS: $s_{n+1} \leq s_{n}$
$s_{n}>\frac{1}{2} \Rightarrow \frac{2}{3} s_{n}>\frac{1}{3}$
$s_{n+1} \stackrel{1}{3}\left(s_{n}+1\right)=\frac{1}{3} s_{n}+\frac{1}{3}<\frac{1}{3} s_{n}+\frac{2}{3} s_{n}=s_{n}$

6.4 d

s_{n} is bounded and decreasing $\Rightarrow \lim s_{n}$ exists
Let $\lim s_{n}=s$
s satisfies $s=\frac{1}{3}(s+1)$
$\frac{2}{3} s=\frac{1}{3}$
$s=\frac{1}{2}$

$7 \quad 10.11$

$7.1 \quad$ a

Show t_{n} is bounded
Prove by induction that $\forall n, t_{n}>0$
$t_{1}=1>0$
Assume $t_{n}>0$
WTS: $t_{n+1}=\left(1-\frac{1}{4(n+1)^{2}}\right) t_{n}>0$
$\left.\left(1-\frac{1}{4(n+1)^{2}}\right)\right)$ is positive $\forall n$, and $t_{n}>0$. Thus $t_{n+1}>0$
Show t_{n} is decreasing
WTS: $t_{n+1} \leq t_{n}$
$\left(1-\frac{1}{4 n^{2}}\right) t_{n} \leq t_{n}$
$\left(4 n^{2}-1\right) t_{n} \leq 4 n^{2} t_{n}$
$t_{n} \geq-1$
Because $t_{n}>0, t_{n} \geq-1$
Because t_{n} is decreasing and bounded, $\lim t_{n}$ exists

7.2 b

$\frac{1}{e}$?

8 Squeeze test

Let $\epsilon>0$
$\lim a_{n}=L \Rightarrow \exists N_{0}$ s.t. $\forall n>N_{0},\left|L-a_{n}\right|<\epsilon$
$a_{n}>L-\epsilon$
$\lim c_{n}=L \Rightarrow \exists N_{1}$ s.t. $\forall n>N_{1},\left|L-c_{n}\right|<\epsilon$
$c_{n}<L+\epsilon$
Let $N>\max N_{0}, N_{1}$
$\forall n>N, a_{n}<b_{n}<c_{n} \Rightarrow L-\epsilon<b_{n}<L+\epsilon \Rightarrow\left|b_{n}-L\right|<\epsilon \Rightarrow \lim b_{n}=L$

