Math 104 HW 1

Jonathan Wang

January 29, 2022

1 9.9

1.1 a

$$\begin{split} &\lim s_n = +\infty \Rightarrow \forall M > 0, \exists N_1 \, s.t. \, \forall n > N_1, s_n > M \\ &\text{Let } N = \max\{N_0, N_1\} \\ &\forall n > N, t_n \geq s_n > M \Rightarrow \lim t_n = +\infty \end{split}$$

1.2 b

$$\begin{split} &\lim t_n = -\infty \Rightarrow \forall M < 0, \exists N_1 \, s.t. \, \forall n > N_1, t_n < M \\ &\text{Let } N = \max\{N_0, N_1\} \\ &\forall n > N, s_n \geq t_n < M \Rightarrow \lim s_n = -\infty \end{split}$$

1.3 c

Let $\lim s_n = s$, $\lim t_n = t$ $\lim(t_n - s_n) = t - s \Rightarrow \forall \epsilon > 0, \exists N_1 \ s.t. \ \forall n > N_1, |(t_n - s_n) - (t - s)| < \epsilon$ For the sake of contradiction, assume s > tLet $N = max\{N_0, N_1\}$ $\forall n > N, t_n - s_n \ge 0$ and t - s < 0Thus, $(t_n - s_n) - (t - s) > 0$ Let $0 < \epsilon < (t_n - s_n) - (t - s)$. Then, $|(t_n - s_n) - (t - s)| > \epsilon$. A contradiction is reached. Thus, $s \le t$

2 9.15

$$\begin{split} &\frac{s_{n+1}}{s_n} = \frac{\frac{a^{n+1}}{(n+1)!}}{\frac{a}{n!}} = \frac{a}{n+1} \\ &\lim \frac{s_{n+1}}{s_n} = 0 \\ &\forall \epsilon > 0, \exists N \ s.t. \ \forall n > N, |\frac{s_{n+1}}{s_n}| < \epsilon \\ &\operatorname{Let} \ \epsilon = \gamma < 1 \\ &\frac{|s_{n+1}|}{|s_n|} < \gamma \end{split}$$

$$\begin{split} |s_{n+1}| < \gamma |s_n| \Rightarrow |s_n| < \gamma |s_{n-1}| < \gamma^2 |s_{n-2}| < \ldots < \gamma^{n-N} |s_N| \\ \lim \gamma^{n-N} |s_N| = \lim \gamma^n \gamma^{-N} |s_N| = 0 \text{ (because } \gamma < 1) \end{split}$$
Since $|s_n| \leq \gamma^{n-N} |s_N|$, $\lim |s_n| \leq \lim \gamma^{n-N} |s_N| = 0$ from 9.9c. Thus, $\lim s_n = 0$

3 10.7

Let $s_1 = \sup S - \frac{1}{m}$ s.t. $m \in \mathbf{N}$ and $s_1 \in S$. This is possible because by the definition of $\sup, \exists s \in S$ s.t. $s > \sup S - \epsilon$, where $\epsilon > 0$. Define $s_n = \sup S - \frac{1}{m+n-1}$. To show that $s_n \in S$, for the sake of contradiction assume that $s_n \notin S$. We know s_n is a monotonically increasing sequence, because $\frac{1}{m+n-1}$ is monotonically decreasing. If $s_n \notin S$, then $s_n \ge \sup S$ by the definition of $\sup S$ being the smallest upper bound for S. This is a contradiction to $s_n = \sup S - \frac{1}{m+n-1} < \sup S$ Therefore, $\lim s_n = \sup S$.

4 10.8

WTS: $\forall n, \sigma_{n+1} \geq \sigma_n$ $\sigma_{n+1} = \frac{1}{n+1} (s_1 + s_n + s_{n+1}) = \frac{1}{n+1} (\frac{n(s_1 + \dots + s_n)}{n} + s_{n+1}) = \frac{1}{n+1} (n\sigma_n + s_{n+1})$ We can show $ns_{n+1} = s_{n+1} + \dots + s_{n+1} \ge s_1 + \dots + s_n$ by induction. Thus, $s_{n+1} \ge \frac{s_1 + \dots + s_n}{n} = \sigma_n$ Thus $n\sigma_{n+1} = s_{n+1} + \dots + s_n = \sigma_n$ Thus, $n\sigma_n + s_{n+1} \stackrel{n}{\geq} n\sigma_n + \sigma_n \Rightarrow n\sigma_n + s_{n+1} \ge (n+1)\sigma_n \Rightarrow \frac{1}{n+1}(n\sigma_n + s_{n+1}) =$ $\sigma_{n+1} \ge \sigma_n$

$\mathbf{5}$ 10.9

5.1a

 $s_{2} = (\frac{1}{2})1^{2} = \frac{1}{2}$ $s_{3} = (\frac{2}{3})(\frac{1}{2})^{2} = \frac{1}{6}$ $s_{4} = (\frac{3}{4})(16)^{2} = \frac{1}{48}$

5.2 \mathbf{b}

WTS: s_n is decreasing and bounded, by showing $0 < s_{n+1} \le 1$ Proof by induction: The above inequality holds for $0 < s_1 = 1 \le 1$ and $0 < s_2 = \frac{1}{2} \le 1$ Assume it holds for some $n \ge 2$ WTS: $\left(\frac{n}{n+1}\right)s_n^2 < s_n$ $ns_n^2 < (n+1)s_n$ $ns_n < n+1$ $s_n < \frac{n+1}{n} = 1 + \frac{1}{n}$ We know $s_n \le 1 < 1 + \frac{1}{n}$

WTS: $0 < s_{n+1}$ $0 < (\frac{n}{n+1})s_n^2$ This is true because n>0 and $s_n^2>0$

5.3 c

Let $\lim s_n = s$. s satisfies $ns^2 = (n+1)s$ $ns^2 - (n+1)s = 0$ s(ns - n - 1) = 0s = 0 since $s \neq \frac{n+1}{n}$, because $s_n < 1 \forall n$

6 10.10

6.1 a

 $s_{2} = \frac{1}{3}(1+1) = \frac{2}{3}$ $s_{3} = \frac{1}{3}(\frac{2}{3}+1) = \frac{5}{9}$ $s_{4} = \frac{1}{3}(\frac{5}{9}+1) = \frac{14}{27}$

6.2 b

 $\begin{array}{l} s_1 = 1 > \frac{1}{2} \\ \text{Assume } s_n > \frac{1}{2} \text{ for some } n \geq 1 \\ s_{n+1} = \frac{1}{3}(s_n + 1) = \frac{1}{3}s_n + \frac{1}{3} > \frac{1}{3}(\frac{1}{2}) + \frac{1}{3} = \frac{1}{2} \end{array}$

6.3 c

 $\begin{array}{l} \text{WTS:} \; s_{n+1} \leq s_n \\ s_n > \frac{1}{2} \Rightarrow \frac{2}{3} s_n > \frac{1}{3} \\ s_{n+1} = \frac{1}{3} (s_n+1) = \frac{1}{3} s_n + \frac{1}{3} < \frac{1}{3} s_n + \frac{2}{3} s_n = s_n \end{array}$

6.4 d

 $\begin{array}{l} s_n \text{ is bounded and decreasing } \Rightarrow \lim s_n \text{ exists} \\ \text{Let } \lim s_n = s \\ s \text{ satisfies } s = \frac{1}{3}(s+1) \\ \frac{2}{3}s = \frac{1}{3} \\ s = \frac{1}{2} \end{array}$

7 10.11

7.1 a

Show t_n is bounded Prove by induction that $\forall n, t_n > 0$ $\begin{array}{l} t_1=1>0\\ \text{Assume }t_n>0\\ \text{WTS: }t_{n+1}=(1-\frac{1}{4(n+1)^2})t_n>0\\ (1-\frac{1}{4(n+1)^2})) \text{ is positive }\forall n, \text{ and }t_n>0. \text{ Thus }t_{n+1}>0\\ \text{Show }t_n \text{ is decreasing}\\ \text{WTS: }t_{n+1}\leq t_n \end{array}$

WTS: $t_{n+1} \leq t_n$ $(1 - \frac{1}{4n^2})t_n \leq t_n$ $(4n^2 - 1)t_n \leq 4n^2t_n$ $t_n \geq -1$ Because $t_n > 0, t_n \geq -1$

Because t_n is decreasing and bounded, $\lim t_n$ exists

7.2 b

 $\frac{1}{e}$?

8 Squeeze test

 $\begin{array}{l} \operatorname{Let}\,\epsilon>0\\ \lim a_n=L\Rightarrow \exists N_0 \text{ s.t. } \forall n>N_0, |L-a_n|<\epsilon\\ a_n>L-\epsilon\\ \lim c_n=L\Rightarrow \exists N_1 \text{ s.t. } \forall n>N_1, |L-c_n|<\epsilon\\ c_n<L+\epsilon\\ \operatorname{Let}\,N>\max N_0, N_1\\ \forall n>N, a_n< b_n< c_n\Rightarrow L-\epsilon< b_n< L+\epsilon\Rightarrow |b_n-L|<\epsilon\Rightarrow \lim b_n=L \end{array}$