Math 104 HW 3

Jonathan Wang

February 4, 2022

1 10.6

1.1 a

Let $\epsilon > 0$ and $N = \log_2(\frac{1}{\epsilon}) + 1$. Then $n > N \Rightarrow n - 1 > \log_2(\frac{1}{\epsilon}) \Rightarrow \epsilon > 2^{1-n}$ Let m, n > N. $|s_n - s_m| < \sum_{i=m}^{n-1} 2^{-i} < \sum_{i=m}^{\infty} 2^{-i} = 2^{1-m} < \epsilon$ Thus, (s_n) is Cauchy and convergent.

1.2 b

No, it is possible for (s_n) to be unbounded. If we use an analogous proof to part a, we can only bound $|s_n - s_m| < \sum_{i=m}^{n-1} \frac{1}{i} < \sum_{i=m}^{\infty} \frac{1}{i} < \infty$. Thus, for any given ϵ , one can pick n > N s.t. $|s_n - s_m| > \epsilon$.

2 11.2

2.1 a

 $a_n: n_k = 2k. \ a_{n_k} = 1$ $b_n: n_k = k. \ b_n$ is monotonically decreasing. $c_n: n_k = k. \ c_n$ is monotonically increasing. $d_n: n_k = k. \ d_n$ is monotonically decreasing.

Proof that d_n is monotonically decreasing:

 $d_{n+1} = \frac{6(n+1)+4}{7(n+1)-3} = \frac{6n+5}{7n+4} \le \frac{6n+4}{7n-3}$ if $n > \frac{1}{35}$, which is true.

2.2 b

 $\begin{array}{l} a_n \colon \{1,-1\} \\ b_n \colon \{0\} \\ c_n \colon \{+\infty\} \\ d_n \colon \{\frac{6}{7}\} \end{array}$

2.3 c

$$\begin{split} \limsup a_n &= 1, \liminf a_n = -1\\ \limsup b_n &= 0, \liminf b_n = 0\\ \limsup c_n &= +\infty, \liminf c_n = +\infty\\ \limsup d_n &= \frac{6}{7}, \liminf d_n = \frac{6}{7} \end{split}$$

2.4 d

 a_n : diverges b_n : converges c_n : diverges to $+\infty$ d_n : converges

2.5 e

 a_n : bounded b_n : bounded c_n : unbounded d_n : bounded

3 11.3

3.1 a

 $\begin{array}{l} s_n: \ n_k = 6k. \ s_{n_k} = 1\\ t_n: \ n_k = k. \ t_n \ \text{is monotonically decreasing.}\\ u_n: \ n_k = 2k. \ u_{n_k} = \frac{1}{2^k}\\ v_n: n_k = 2k. \ v_{n_k} = \frac{1}{2_k} \end{array}$

3.2 b

 $\begin{array}{l} s_n: \; \{\frac{1}{2}, -\frac{1}{2}, -1, 1\} \\ t_n: \; \{0\} \\ u_n: \; \{0\} \\ v_n: \; \{1, -1\} \end{array}$

3.3 c

$$\begin{split} \limsup s_n &= 1, \limsup inf s_n = -1\\ \limsup t_n &= 0, \lim \inf t_n = 0\\ \limsup u_n &= 0, \lim \inf u_n = 0\\ \limsup v_n &= 1, \lim \inf v_n = -1 \end{split}$$

3.4 d

 s_n : diverges t_n : converges u_n : converges v_n : diverges

3.5 e

 s_n : bounded t_n : bounded u_n : bounded v_n : bounded

4 11.5

4.1 a

The set of subsequential limits S consists of all rational numbers in the interval [0, 1].

Proof that any rational $r \in [0, 1]$ is a subsequential limit of (q_n) :

WTS: The set $\{n : |q_n - r| < \epsilon\}$ is infinite.

By the denseness of \mathbb{Q} , there exist an infinitely many rationals between a and b for $a, b \in \mathbb{R}$ (Ex 4.11).

Thus, there exist infinitely many rationals between $r - \epsilon$ and $r + \epsilon$, and because q_n consists of all rationals in (0, 1], $\{n : |q_n - r| < \epsilon\}$ is infinite.

4.2 b

By Thm 11.8, $\sup S = \limsup s_n$ and $\inf S = \liminf s_n$. Thus, $\limsup s_n = 1$ and $\liminf s_n = 0$.

5 What is limsup?

Take the tail of a sequence, then consider the group of values within the tail of the sequence. Limsup is the smallest upper bound of this group of values. Sup is the smallest upper bound for a set, but limsup is applied to a sequence rather than a set. It is counter-intuitive that it is possible for the limsup to converge but not the limit of the sequence itself (for example, $s_n = (-1)^n$ has $\limsup s_n = 1$, but s_n does not converge).