Math 104 HW 3

Jonathan Wang

February 4, 2022

$1 \quad 10.6$

1.1 a

Let $\epsilon>0$ and $N=\log _{2}\left(\frac{1}{\epsilon}\right)+1$. Then $n>N \Rightarrow n-1>\log _{2}\left(\frac{1}{\epsilon}\right) \Rightarrow \epsilon>2^{1-n}$
Let $m, n>N .\left|s_{n}-s_{m}\right|<\sum_{i=m}^{n-1} 2^{-i}<\sum_{i=m}^{\infty} 2^{-i}=2^{1-m}<\epsilon$
Thus, $\left(s_{n}\right)$ is Cauchy and convergent.

1.2 b

No, it is possible for $\left(s_{n}\right)$ to be unbounded. If we use an analogous proof to part a, we can only bound $\left|s_{n}-s_{m}\right|<\sum_{i=m}^{n-1} \frac{1}{i}<\sum_{i=m}^{\infty} \frac{1}{i}<\infty$. Thus, for any given ϵ, one can pick $n>N$ s.t. $\left|s_{n}-s_{m}\right|>\epsilon$.

211.2

$2.1 \quad a$

$a_{n}: n_{k}=2 k . a_{n_{k}}=1$
$b_{n}: n_{k}=k . b_{n}$ is monotonically decreasing.
$c_{n}: n_{k}=k . c_{n}$ is monotonically increasing.
$d_{n}: n_{k}=k . d_{n}$ is monotonically decreasing.
Proof that d_{n} is monotonically decreasing:
$d_{n+1}=\frac{6(n+1)+4}{7(n+1)-3}=\frac{6 n+5}{7 n+4} \leq \frac{6 n+4}{7 n-3}$ if $n>\frac{1}{35}$, which is true.

2.2 b

$a_{n}:\{1,-1\}$
$b_{n}:\{0\}$
$c_{n}:\{+\infty\}$
$d_{n}:\left\{\frac{6}{7}\right\}$

2.3 c

$\limsup a_{n}=1, \liminf a_{n}=-1$
$\limsup b_{n}=0, \liminf b_{n}=0$
$\limsup c_{n}=+\infty, \liminf c_{n}=+\infty$
$\limsup d_{n}=\frac{6}{7}, \liminf d_{n}=\frac{6}{7}$

2.4 d

a_{n} : diverges
b_{n} : converges
c_{n} : diverges to $+\infty$
d_{n} : converges

2.5 e

a_{n} : bounded
b_{n} : bounded
c_{n} : unbounded
d_{n} : bounded

311.3

$3.1 \quad \mathrm{a}$

$s_{n}: n_{k}=6 k . s_{n_{k}}=1$
$t_{n}: n_{k}=k . t_{n}$ is monotonically decreasing.
$u_{n}: n_{k}=2 k . u_{n_{k}}=\frac{1}{2^{k}}$
$v_{n}: n_{k}=2 k . v_{n_{k}}=\frac{1}{2 k}$

3.2 b

$s_{n}:\left\{\frac{1}{2},-\frac{1}{2},-1,1\right\}$
$t_{n}:\{0\}$
$u_{n}:\{0\}$
$v_{n}:\{1,-1\}$

3.3 c

$\limsup s_{n}=1, \lim \inf s_{n}=-1$
$\limsup t_{n}=0, \liminf t_{n}=0$
$\limsup u_{n}=0, \liminf u_{n}=0$
$\lim \sup v_{n}=1, \lim \inf v_{n}=-1$

3.4 d

s_{n} : diverges
t_{n} : converges
u_{n} : converges
v_{n} : diverges

3.5 e

s_{n} : bounded
t_{n} : bounded
u_{n} : bounded
v_{n} : bounded

$4 \quad 11.5$

$4.1 \quad \mathrm{a}$

The set of subsequential limits S consists of all rational numbers in the interval $[0,1]$.

Proof that any rational $r \in[0,1]$ is a subsequential limit of $\left(q_{n}\right)$:
WTS: The set $\left\{n:\left|q_{n}-r\right|<\epsilon\right\}$ is infinite.
By the denseness of \mathbb{Q}, there exist an infinitely many rationals between a and b for $a, b \in \mathbb{R}(\operatorname{Ex} 4.11)$.
Thus, there exist infinitely many rationals between $r-\epsilon$ and $r+\epsilon$, and because q_{n} consists of all rationals in $(0,1],\left\{n:\left|q_{n}-r\right|<\epsilon\right\}$ is infinite.

4.2 b

By Thm 11.8, $\sup S=\limsup s_{n}$ and $\inf S=\lim \inf s_{n}$. Thus, $\limsup s_{n}=1$ and $\liminf s_{n}=0$.

5 What is limsup?

Take the tail of a sequence, then consider the group of values within the tail of the sequence. Limsup is the smallest upper bound of this group of values. Sup is the smallest upper bound for a set, but limsup is applied to a sequence rather than a set. It is counter-intuitive that it is possible for the limsup to converge but not the limit of the sequence itself (for example, $s_{n}=(-1)^{n}$ has $\limsup s_{n}=1$, but s_{n} does not converge).

