Math 104 HW 5

Jonathan Wang

February 27, 2022

113.3

1.1 a

$|x-y| \geq 0 \forall x, y$, so $\sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \ldots\right\} \geq 0$
If $x=y, d(x, x)=\sup \{0,0, \ldots, 0\}=0$
If $d(x, y)=0$, because $\left|x_{j}-y_{j}\right| \geq 0 \forall j$,
$\sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \ldots\right\}=0 \Rightarrow\left|x_{j}-y_{j}\right|=0 \forall j$
$\Rightarrow x=y$
$d(x, y)=d(y, x)$ because $\left|x_{j}-y_{j}\right|=\left|y_{j}-x_{j}\right|$
$d(x, y)+d(y, z)=\sup \left\{\left|x_{j}-y_{j}\right|: j=1,2, \ldots\right\}+\sup \left\{\left|y_{j}-z_{j}\right|: j=1,2, \ldots\right\}$
$=\sup \left\{\left|x_{j}-y_{j}\right|+\left|y_{j}-z_{j}\right|: j=1,2, \ldots\right\}$
$\geq \sup \left\{\left|x_{j}-z_{j}\right|: j=1,2, \ldots\right\}=d(x, z)$

1.2 b

No, the metric can produce a value that is not real.
Example: $x=(0,0, \ldots), y=(1,1, \ldots), d(x, y)=\infty$

$2 \quad 13.5$

2.1 a

$x \in \bigcap\{S \backslash U: U \in \mathcal{U}\}$
$\Longleftrightarrow x \in\{S\} \forall U \in \mathcal{U}$
$\Longleftrightarrow x \notin U \forall U \in \mathcal{U}$
$\Longleftrightarrow x \notin \bigcup\{U: U \in \mathcal{U}\}$
$\Longleftrightarrow x \in S \backslash \bigcup\{U: U \in \mathcal{U}\}$
$\bigcap\{S \backslash U: U \in \mathcal{U}\}=S \backslash \bigcup\{U: U \in \mathcal{U}\}$

2.2 b

Using the notation from part a, let \mathcal{U} be a family of open sets. Then $\bigcap\{S \backslash U$: $U \in \mathcal{U}\}$ is the intersection of a collection of closed sets. By part a, the intersection of closed sets is equivalent to $S \backslash \bigcup\{U: U \in \mathcal{U}\}$. Because the union of open sets is also open, $S \backslash \bigcup\{U: U \in \mathcal{U}\}$ is closed.

$3 \quad 13.7$

Any set in \mathbb{R} consists of a disjoint union of intervals of the form $[a, b],(a, b),(a, b]$, and $[a, b)$. We also allow a and b to take on values $+\infty$ and $-\infty$. We show that if a set in \mathbb{R} is open $[a, b],[a, b),(a, b]$ cannot be part of that disjoint union. Given interval $[a, b)$, consider a. There does not exist any open ball $B_{r}(a)$, because for any $r>0, a-r \notin[a, b)$. The same argument can be applied for intervals of form $(a, b]$ and $[a, b]$. Thus, any set in \mathbb{R} can only consist of a disjoint union of intervals of the form (a, b). To show this disjoint union of open intervals is countable, for each interval (a, b), there exists a rational $q \in(a, b)$ by the Denseness of \mathbb{Q}. Thus, the mapping from open intervals to \mathbb{Q} is injective, so the set of open intervals is countable.

$4 \quad 4$

WTS: $\forall \bar{p} \in \overline{\bar{S}}, \bar{p} \in S$, i.e. there exists a sequence $\left(p_{n}\right) \in X$ s.t. $p_{n} \rightarrow p$
Let $\epsilon>0$
Because $\bar{p} \in \overline{\bar{S}}$, there exists a sequence $\left(\bar{p}_{n}\right)$ s.t. $\bar{p}_{n} \rightarrow \bar{p}$
Thus, $\exists N_{1}>0$ s.t. $\forall n_{1}>N_{1},\left|\bar{p}_{n_{1}}-\bar{p}\right|>\frac{\epsilon}{2}$
Fix n_{1}. Because $\bar{p}_{n_{1}} \in \bar{S}, \exists N$ s.t. $\forall n_{2}>N$ s.t. $\left|p_{n_{2}}-\bar{p}_{n_{1}}\right|<\frac{\epsilon}{2}$
Thus, $\forall n_{2}>N,\left|p_{n_{2}}-\bar{p}\right| \leq\left|p_{n_{2}}-\bar{p}_{n_{1}}\right|+\left|\bar{p}_{n_{1}}-\bar{p}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}<\epsilon$
Thus, there exists a sequence $\left(p_{n}\right) \in X$ s.t. $p_{n} \rightarrow p$

$5 \quad 5$

WTS: $\bar{S} \subset \bigcap\{F \subset X$ closed, $S \subset F\}$
Let $s \in \bar{S}$. Thus, there exists a sequence $\left(s_{n}\right) \in S$ s.t. $s_{n} \rightarrow s$
Pick any F s.t. $S \subset F$ and F is closed.
Because $S \subset F,\left(s_{n}\right) \in F$.
F is closed, so all sequences $\left(f_{n}\right) \in F$ have $f_{n} \rightarrow f \in F$
Thus, $s \in F$
Because we picked arbitrary $F, s \in$ all F 's s.t. $S \subset F$ and F is closed. Thus,
$s \in \bigcap\{F \subset X$ closed, $S \subset F\}$
To show $\bar{S}=\bigcap\{F \subset X$ closed, $S \subset F\}$, let one such F be $\bar{S} . S \subset \bar{S}$, and \bar{S} is closed.
Thus, $\bigcap\{F \subset X$ closed, $S \subset F\}=\bar{S}$

