Math 104 HW 5 $\,$

Jonathan Wang

February 27, 2022

$1 \ 13.3$

1.1 a

$$\begin{split} |x - y| &\geq 0 \; \forall x, y, \, \text{so} \, \sup\{|x_j - y_j| : j = 1, 2, \ldots\} \geq 0 \\ \text{If} \; x = y, \, d(x, x) = \sup\{0, 0, \ldots, 0\} = 0 \\ \text{If} \; d(x, y) &= 0, \, \text{because} \; |x_j - y_j| \geq 0 \; \forall j, \\ \sup\{|x_j - y_j| : j = 1, 2, \ldots\} = 0 \Rightarrow |x_j - y_j| = 0 \; \forall j \\ \Rightarrow x = y \end{split}$$

d(x,y) = d(y,x) because $|x_j - y_j| = |y_j - x_j|$

 $\begin{array}{l} d(x,y) + d(y,z) = \sup\{|x_j - y_j| : j = 1, 2, \ldots\} + \sup\{|y_j - z_j| : j = 1, 2, \ldots\} \\ = \sup\{|x_j - y_j| + |y_j - z_j| : j = 1, 2, \ldots\} \\ \geq \sup\{|x_j - z_j| : j = 1, 2, \ldots\} = d(x,z) \end{array}$

1.2 b

No, the metric can produce a value that is not real.

Example: $x=(0,0,\ldots), y=(1,1,\ldots), d(x,y)=\infty$

2 13.5

2.1 a

 $\begin{array}{l} x \in \bigcap \{S \backslash U : U \in \mathcal{U}\} \\ \Longleftrightarrow \quad x \in \{S\} \; \forall U \in \mathcal{U} \\ \Leftrightarrow \quad x \notin U \; \forall U \in \mathcal{U} \\ \Leftrightarrow \quad x \notin \bigcup \{U : U \in \mathcal{U}\} \\ \Leftrightarrow \quad x \in S \backslash \bigcup \{U : U \in \mathcal{U}\} \end{array}$

 $\bigcap \{S \backslash U : U \in \mathcal{U}\} = S \backslash \bigcup \{U : U \in \mathcal{U}\}$

2.2 b

Using the notation from part a, let \mathcal{U} be a family of open sets. Then $\bigcap \{S \setminus U : U \in \mathcal{U}\}\$ is the intersection of a collection of closed sets. By part a, the intersection of closed sets is equivalent to $S \setminus \bigcup \{U : U \in \mathcal{U}\}\$. Because the union of open sets is also open, $S \setminus \bigcup \{U : U \in \mathcal{U}\}\$ is closed.

3 13.7

Any set in \mathbb{R} consists of a disjoint union of intervals of the form [a, b], (a, b), (a, b],and [a, b). We also allow a and b to take on values $+\infty$ and $-\infty$. We show that if a set in \mathbb{R} is open [a, b], [a, b), (a, b] cannot be part of that disjoint union. Given interval [a, b), consider a. There does not exist any open ball $B_r(a)$, because for any r > 0, $a - r \notin [a, b]$. The same argument can be applied for intervals of form (a, b] and [a, b]. Thus, any set in \mathbb{R} can only consist of a disjoint union of intervals of the form (a, b). To show this disjoint union of open intervals is countable, for each interval (a, b), there exists a rational $q \in (a, b)$ by the Denseness of \mathbb{Q} . Thus, the mapping from open intervals to \mathbb{Q} is injective, so the set of open intervals is countable.

4 4

WTS: $\forall \bar{p} \in \bar{S}, \bar{p} \in S$, i.e. there exists a sequence $(p_n) \in X$ s.t. $p_n \to p$

Let $\epsilon > 0$

Because $\bar{p} \in \overline{\bar{S}}$, there exists a sequence (\bar{p}_n) s.t. $\bar{p}_n \to \bar{p}$ Thus, $\exists N_1 > 0$ s.t. $\forall n_1 > N_1, |\bar{p}_{n_1} - \bar{p}| > \frac{\epsilon}{2}$

Fix
$$n_1$$
. Because $\bar{p}_{n_1} \in \bar{S}$, $\exists N \text{ s.t. } \forall n_2 > N \text{ s.t. } |p_{n_2} - \bar{p}_{n_1}| < \frac{\epsilon}{2}$

Thus, $\forall n_2 > N$, $|p_{n_2} - \bar{p}| \leq |p_{n_2} - \bar{p}_{n_1}| + |\bar{p}_{n_1} - \bar{p}| < \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon$ Thus, there exists a sequence $(p_n) \in X$ s.t. $p_n \to p$

5 5

WTS: $\bar{S} \subset \bigcap \{F \subset X \text{ closed}, S \subset F\}$

Let $s \in \overline{S}$. Thus, there exists a sequence $(s_n) \in S$ s.t. $s_n \to s$ Pick any F s.t. $S \subset F$ and F is closed. Because $S \subset F$, $(s_n) \in F$. F is closed, so all sequences $(f_n) \in F$ have $f_n \to f \in F$ Thus, $s \in F$ Because we picked arbitrary F, $s \in$ all F's s.t. $S \subset F$ and F is closed. Thus, $s\in \bigcap\{F\subset X \text{ closed},S\subset F\}$

To show $\overline{S} = \bigcap \{F \subset X \text{ closed}, S \subset F\}$, let one such F be \overline{S} . $S \subset \overline{S}$, and \overline{S} is closed. Thus, $\bigcap \{F \subset X \text{ closed}, S \subset F\} = \overline{S}$