Math 104 HW 6

Jonathan Wang

March 8, 2022

$1 \quad 1$

Let $\left(x_{n}, y_{n}\right)$ be a sequence in $[0,1]^{2}$. The sequence $\left(x_{n}\right)$ is bounded, so there exists a subsequence $\left(x_{n_{k}}\right)$ that converges to some $x \in[0,1]$ (since $[0,1]$ is closed). Let $\left(x_{n_{k}}, y_{n_{k}}\right)$ be the subsequence of $\left(x_{n}, y_{n}\right)$ containing $\left(x_{n_{k}}\right)$. By the same argument, there exists a subsequence $y_{n_{k_{l}}}$ that converges to some $y \in$ $[0,1] .\left(x_{n_{k_{l}}}, y_{n_{k_{l}}}\right)$ is still a subsequence of $\left(x_{n}, y_{n}\right)$ and $\left(x_{n_{k_{l}}}, y_{n_{k_{l}}}\right)$ converges to (x, y) (any subsequence of $\left(x_{n_{k}}\right)$ still converges to $\left.x\right)$; thus, $[0,1]^{2}$ is sequentially compact.

$2 \quad 2$

E is uncountable, which can be shown using Cantor's diagonalization argument. Assume by contradiction that E is countable. Then, the set of decimal expansions that are infinite in E is countable, and these decimal expansions can be listed. For the nth decimal point of point n, change the digit (if the decimal point is 4 , change it to 7 and vice versa). By construction, this new decimal expansion is in E, but is not enumerated in the list. Thus, a contradiction exists, and E is uncountable.

First, we show that E is closed. We prove that for $\left(p_{n}\right) \in E$, if $\left(p_{n}\right)$ converges to $p, p \in E$. For the sake the contradiction, suppose $\left(p_{n}\right) \in E$ and $p_{n} \rightarrow p$ s.t. $p \notin E$. Then, the decimal expansion for p consists of at least one digit that is not 4 nor 7. p can then be represented as $0 . * * \ldots * x * \ldots$, where $x \neq 4,7$ and * is any digit. Consider the closest element to p in $\left(p_{n}\right)$. Call this element p_{i}. Set $\epsilon=\left|p-p_{i}\right|$. Then, there does not exist N s.t. $\forall n>N,\left|p_{n}-p\right|<\epsilon$, which means (p_{n}) does not converge to p and a contradiction is reached.
E is compact. Let $\left(p_{n}\right)$ be a sequence in $E .\left(p_{n}\right)$ is bounded, so there exists a subsequence of $\left(p_{n}\right)$ that converges to some $p \in E$, because E is closed. Thus, E is compact.

$3 \quad 3$

Yes, it is possible that the inclusion is a strict inclusion. Consider if all subsets A_{i} are all equal and equal $(0,1)$. Then $B=\cup A_{i}=A_{1} . \bar{A}_{i}=[0,1]$, and $\cup \bar{A}_{i}=\bar{A}_{1}=\bar{B}$.

$4 \quad 4$

The argument is wrong where it states "adjacent open intervals sandwich a closed interval." The set \mathbb{R} is closed (but does not consist of a countable union of closed intervals), and the complement of \mathbb{R} is the empty set, which is open. However, there are zero open intervals in the complement of \mathbb{R}, so one cannot use the argument that the closed intervals are sandwiched by countably infinite open intervals.

