Math 104 HW 7

Jonathan Wang

March 13, 2022

11

Let $X \times Y \subset \cup_{\alpha \in I} U_{\alpha}$, where each U_{α} is open
$\forall(x, y) \in X \times Y,(x, y) \in U_{\alpha}$
Because U_{α} is open, it is possible to construct an open box $B_{(x, y)} \in U_{\alpha}$ around (x, y) of the form $V_{(x, y)} \times W_{(x, y)}$, where $V_{(x, y)} \subset X$ and $W_{(x, y)} \subset Y$.

Then, $X \subset \cup_{(x, y) \in X \times Y} V_{(x, y)}, Y \subset \cup_{(x, y) \in X \times Y} W_{(x, y)}$
Because X and Y are open cover compact, $X \subset \cup_{i=1}^{n} V_{\left(x_{i}, y_{i}\right)}$ and $Y \subset \cup_{i=1}^{m} W_{\left(x_{i}, y_{i}\right)}$
$\forall(x, y)$, pick U_{α} s.t. $x \in V_{\left(x_{i}, y_{i}\right)}$ and $y \in W_{\left(x_{j}, y_{j}\right)}$ and $V_{\left(x_{i}, y_{i}\right)} \times W_{\left(x_{j}, y_{j}\right)} \in U_{\alpha}$
Because $\cup_{i=1}^{n} V_{\left(x_{i}, y_{i}\right)}$ and $\cup_{i=1}^{m} W_{\left(x_{i}, y_{i}\right)}$ consist of a finite union of sets, $V_{\left(x_{i}, y_{i}\right)} \times$ $W_{\left(x_{j}, y_{j}\right)}$ corresponds to finitely many (at most $n \times m$) open sets U_{α}.

Thus, $X \times Y$ can be covered by a finite subcover of $\cup_{\alpha \in I} U_{\alpha}$.

$2 \quad 2$

2.1 a

False, consider $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=1$. Let $A=(0,1)$. Then $f(A)=[1,1]$, which is closed.

2.2 b

False, consider $f: \mathbb{R}^{+} \rightarrow \mathbb{R}, f(x)=\frac{x}{x+1}$. Let $A=[0,+\infty)$, which is closed. Then $f(A)=[0,1)$, which is not closed.

2.3 c

False, consider $f: \mathbb{R}^{+} \rightarrow \mathbb{R}, f(x)=\frac{1}{x}$. Let $A=(0,1]$. Then $f(A)=[1,+\infty]$, which is unbounded.

2.4 d

True. Let $f(A)=\cup_{\alpha \in I} U_{\alpha}$ where each U_{α} is open.
$\forall \alpha \in I, f\left(f^{-1}\left(U_{\alpha}\right)\right) \subset U_{\alpha} \Rightarrow A \subset \cup_{\alpha \in I} f^{-1}\left(U_{\alpha}\right)$
Because f is continuous and $U_{\alpha}, f^{-1}\left(U_{\alpha}\right)$ is open.
Thus, because A is compact, $A \subset f^{-1}\left(U_{1}\right) \cup \ldots \cup f^{-1}\left(U_{N}\right)$, and $f(A) \subset U_{1} \cup$ $\ldots \cup U_{N}$. Thus $f(A)$ is compact.

2.5 e

True. WTS: $f(A)$ is connected, i.e. $f(A)$ cannot be written as $G \sqcup H$ where G and H are 2 non-empty open subsets of $f(A)$.

Proof by contradiction:
Let $f(A)=G \sqcup H$ where where G and H are 2 non-empty open subsets of $f(A)$
Because f is continuous, $f^{-1}(G)$ and $f^{-1}(H)$ are open in X
$A \subset f^{-1}(G) \sqcup f^{-1}(H)$
$A=A \cap\left(f^{-1}(G) \sqcup f^{-1}(H)\right)$
$A=\left(A \cap f^{-1}(G)\right) \sqcup\left(A \cap f^{-1}(H)\right)$
Because $f^{-1}(G)$ is open in $X, A \cap f^{-1}(G)$ is open in A
Thus, A can be written as a disjoint union of 2 non-empty open subsets of A, which is a contradiction, because A is connected. Thus, $f(A)$ is connected.

$3 \quad 3$

Suppose that f is surjective and continuous. Then from 2 d , if $A \subset[0,1]$ is compact, then $f(A)$ is compact. $[0,1]$ is compact, and and $f([0,1])=\mathbb{R}$ because f is surjective. However, \mathbb{R} is not compact. Thus, there is a contradiction and f cannot be both surjective and continuous.

