# Math 104 HW 8 

Jonathan Wang

March 31, 2022

## $1 \quad 1$

We show that $f_{n}$ converges uniformly to $f(x)=\frac{1}{2}$
Let $\epsilon>0$
$\forall x \in \mathbb{R},\left|\frac{n+\sin x}{2 n+\cos \left(n^{2} x\right)}-\frac{1}{2}\right|=\left|\frac{2 \sin x-\cos \left(n^{2} x\right)}{4 n+2 \cos \left(n^{2} x\right)}\right| \leq\left|\frac{3}{4 n+2 \cos \left(n^{2} x\right)}\right| \leq\left|\frac{3}{4 n-2}\right|$
There exists an $N>0$ s.t. $\forall n>N,\left|\frac{3}{4 n-2}\right|<\epsilon$
Thus, $f_{n}$ converges uniformly to $f(x)=\frac{1}{2}$

## 22

$f_{n}(x)=a_{n} x^{n}$ is continuous, so $\sum_{n=1}^{\infty} f_{n}(x)$ is continuous
WTS: $f_{n} \rightarrow f$ uniformly
Let $\epsilon>0$
$\forall x \in[-1,1],\left|a_{n} x^{n}+a_{n+1} x^{n+1}+\ldots+a_{m} x^{m}\right| \leq\left|\left|a_{n} x^{n}\right|+\left|a_{n+1} x^{n+1}\right|+\ldots+\right.$ $\left|a_{m} x^{m}\right|\left|\leq\left|\left|a_{n}\right|+\left|a_{n+1}\right|+\ldots+\right| a_{m} \|\right.$
Because $\sum\left|a_{n}\right|$ is convergent, $\exists N$ s.t. $\forall n, m>N,\left|\left|a_{n}\right|+\left|a_{n+1}\right|+\ldots+\left|a_{m}\right|\right|<\epsilon$ Thus $\forall x \in[-1,1], \exists N$ s.t. $\forall n, m>N,\left|a_{n} x^{n}+a_{n+1} x^{n+1}+\ldots+a_{m} x^{m}\right|<\epsilon$
Thus, $f_{n} \rightarrow f$ uniformly, and $f$ is continuous
$\sum_{n=1}^{\infty}\left|\frac{1}{n^{2}}\right|$ converges, so $\sum_{n=1}^{\infty}\left|\frac{1}{n^{2}}\right|<\infty$
Thus, $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ is continuous on $[-1,1]$

## 33

$\forall x \in[-a, a], \forall n,\left|f_{n}(x)\right|=\left|x^{n}\right| \leq a^{n}$
$\sum_{n=0}^{\infty} a^{n}=\frac{1}{1-a}<\infty$
Thus, $f(x)=\sum_{n=0}^{\infty} f_{n}(x)$ is uniformly convergent in $[-a, a]$.
$\forall x \in(-1,1)$, it is possible to pick $a$ s.t. $x \in[-a, a]$. Since $f$ is uniformly convergent on $[-a, a], f$ is continuous on $[-a, a]$, and $f$ is continuous at $x$. Thus, $f$ is continuous on $(-1,1)$
$\left|f_{n}(x)-f(x)\right|=\left|\sum_{i=0}^{n} x^{-} \frac{1}{1-x}\right|=\left|\frac{1-x^{n+1}}{1-x}-\frac{1}{1-x}\right|=\left|\frac{x^{n+1}}{x-1}\right|$
To show $f$ is not uniformly convergent on $(-1,1)$, we show that for $\epsilon>0, \forall n>0$, $\exists x$ s.t. $\left|\frac{x^{n+1}}{x-1}\right| \geq \epsilon$. Thus, there does not exist $N>0$ s.t. $\forall \epsilon>0, \forall n>N$, $\left|f_{n}(x)-f(x)\right|<\epsilon$

Let $\epsilon=\frac{1}{3}$
WTS: $\left|\frac{x^{n+1}}{x+1}\right| \geq \frac{1}{3} \Longleftrightarrow\left|x^{n+1}\right| \geq \frac{1}{3}|x-1|$
$\frac{1}{3}|x-1| \leq \frac{2}{3}$
It is possible to choose $x \in(-1,1)$ s.t. $\left|x^{n+1}\right| \geq \frac{2}{3}$ by choosing $x$ arbitrarily close to 1
Thus, $f$ is not uniformly convergent on $(-1,1)$

