Math 104 Homework 1

Jonathan Guo

January 28, 2022

$1 \quad 1.10$

We proceed by induction. The base case is $n=1$: we have

$$
(2(1)+1)+\cdots+(4(1)-1)=3=3(1)^{2}
$$

Now, assume the statement is true for some $k \in \mathbb{N}$. We have

$$
\begin{aligned}
& 2(k+1)+1+2(k+1)+3+\cdots+4(k+1)-1 \\
& =2 k+3+2 k+5+\cdots+4 k-1+4 k+1+4 k+3 \\
& =3 k^{2}+4 k+1+4 k+3-(2 k+1) \\
& =3 k^{2}+6 k+3 \\
& =3\left(k^{2}+2 k+1\right) \\
& =3(k+1)^{2}
\end{aligned}
$$

This concludes the inductive step and the proof.

$2 \quad 1.12$

2.1 Part A

$$
\begin{gathered}
(a+b)^{1}=a+b=\binom{1}{0} a+\binom{1}{1} b \\
(a+b)^{2}=a^{2}+2 a b+b^{2}=\binom{2}{0} a^{2}+\binom{2}{1} a b+\binom{2}{2} b^{2} \\
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=\binom{3}{0} a^{3}+\binom{3}{1} a^{2} b+\binom{3}{2} a b^{2}+\binom{3}{3} b^{3}
\end{gathered}
$$

2.2 Part B

$$
\begin{aligned}
&\binom{n}{k}+\binom{n}{k-1}=\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!} \\
&=\frac{n!(n-k+1)}{k!(n-k+1)!}+\frac{n!k}{k!(n-k+1)!} \\
&=\frac{n!(n+1)}{k!(n-k+1)!} \\
&=\frac{(n+1)!}{k!(n-k+1)!} \\
&=\binom{n+1}{k}
\end{aligned}
$$

2.3 Part C

We have verified the base cases $n=1,2,3$ in part A. Assume that the binomial theorem holds for some $n \in \mathbb{N}$. Then, we have

$$
\begin{aligned}
(a+b)^{n+1} & =(a+b)^{n}(a+b) \\
& =\left[\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\cdots+\binom{n}{n} b^{n}\right](a+b)
\end{aligned}
$$

Now for each coefficient $a^{j} b^{n+1-j}$ in the resulting expression (except for $j=0, n+1$), it can come from either $a^{j} b^{n-j} \cdot b$ or $a^{j-1} b^{n+1-j} \cdot a$. By the inductive hypothesis, the coefficients of the above are $\binom{n}{j}$ and $\binom{n}{j-1}$, respectively, which means their sum is $\binom{n+1}{j}$ by part B , and this is the coefficient of $a^{j} b^{n+1-j}$. Finally, for $j=0$ and $n+1$, We have $\binom{n+1}{0}=\binom{n+1}{n+1}=1$ which is true. This completes the inductive step and the proof.

$3 \quad 2.1$

$\sqrt{3}$ must satisfy the equation $x^{2}-3=0$. By the rational root theorem, the only possible roots are $[1,-1,3,-3]$. But plugging each one in, we find that

$$
\begin{gathered}
1^{2}-3=-2 \neq 0 \\
(-1)^{2}-3=-2 \neq 0 \\
3^{2}-3=6 \neq 0 \\
(-3)^{2}-3=6 \neq 0
\end{gathered}
$$

This means that $\sqrt{3}$ is irrational.
$\sqrt{5}$ must satisfy the equation $x^{2}-5=0$. By the rational root theorem, the only possible roots are [$1,-1,5,-5]$. But plugging each one in, we find that

$$
\begin{gathered}
1^{2}-5=-4 \neq 0 \\
(-1)^{2}-5=-4 \neq 0 \\
5^{2}-5=20 \neq 0 \\
(-5)^{2}-5=20 \neq 0
\end{gathered}
$$

This means that $\sqrt{5}$ is irrational.
$\sqrt{7}$ must satisfy the equation $x^{2}-7=0$ By the rational root theorem, the only possible roots are [1, -1, 7, -7] But plugging each one in, we find that

$$
\begin{gathered}
1^{2}-7=-6 \neq 0 \\
(-1)^{2}-7=-6 \neq 0 \\
7^{2}-7=42 \neq 0 \\
(-7)^{2}-7=42 \neq 0
\end{gathered}
$$

This means that $\sqrt{7}$ is irrational.
$\sqrt{24}$ must satisfy the equation $x^{2}=24$. By the rational root theorem, the only possible roots are $[1,-1,2,-2,3,-3,4,-4,6,-6,8,-8,12,-12,24,-24]$. But plugging each one in, we find that

$$
\begin{gathered}
1^{2}-24=-23 \neq 0 \\
(-1)^{2}-24=-23 \neq 0 \\
2^{2}-24=-20 \neq 0 \\
(-2)^{2}-24=-20 \neq 0 \\
3^{2}-24=-15 \neq 0 \\
(-3)^{2}-24=-15 \neq 0 \\
4^{2}-24=-8 \neq 0
\end{gathered}
$$

$$
\begin{gathered}
(-4)^{2}-24=-8 \neq 0 \\
6^{2}-24=12 \neq 0 \\
(-6)^{2}-24=12 \neq 0 \\
8^{2}-24=40 \neq 0 \\
(-8)^{2}-24=40 \neq 0 \\
12^{2}-24=120 \neq 0 \\
(-12)^{2}-24=120 \neq 0 \\
24^{2}-24=552 \neq 0 \\
(-24)^{2}-24=552 \neq 0
\end{gathered}
$$

This means that $\sqrt{24}$ is irrational.
$\overline{\sqrt{31}}$ must satisfy the equation $x^{2}=31$. By the rational root theorem, the only possible roots are [1, $-1,31,-31]$. But plugging each one in, we find that

$$
\begin{gathered}
1^{2}-31=-30 \neq 0 \\
(-1)^{2}-31=-30 \neq 0 \\
31^{2}-31=930 \neq 0 \\
(-31)^{2}-31=930 \neq 0
\end{gathered}
$$

This means that $\sqrt{31}$ is irrational.

$4 \quad 2.2$

$\sqrt[3]{2}$ must satisfy the equation $x^{3}-2=0$ By the rational root theorem, the only possible roots are [1, $-1,2,-2$] But plugging each one in, we find that

$$
\begin{gathered}
1^{3}-2=-1 \neq 0 \\
(-1)^{3}-2=-3 \neq 0 \\
2^{3}-2=6 \neq 0 \\
(-2)^{3}-2=-10 \neq 0
\end{gathered}
$$

This means that $\sqrt[3]{2}$ is irrational.
$\sqrt[7]{5}$ must satisfy the equation $x^{7}-5=0$ By the rational root theorem, the only possible roots are $[1,-1,5,-5]$ But plugging each one in, we find that

$$
\begin{gathered}
1^{7}-5=-4 \neq 0 \\
(-1)^{7}-5=-6 \neq 0 \\
5^{7}-5=78120 \neq 0 \\
(-5)^{7}-5=-78130 \neq 0
\end{gathered}
$$

This means that $\sqrt[7]{5}$ is irrational.
$\sqrt[4]{13}$ must satisfy the equation $x^{4}-13=0$ By the rational root theorem, the only possible roots are $[1,-1,13,-13]$ But plugging each one in, we find that

$$
\begin{gathered}
1^{4}-13=-12 \neq 0 \\
(-1)^{4}-13=-12 \neq 0 \\
13^{4}-13=28548 \neq 0 \\
(-13)^{4}-13=28548 \neq 0
\end{gathered}
$$

This means that $\sqrt[4]{13}$ is irrational.

$5 \quad 2.7$

5.1 Part A

Notice that $4+2 \sqrt{3}=1+2 \sqrt{3}+(\sqrt{3})^{2}=(1+\sqrt{3})^{2}$. Therefore,

$$
\sqrt{4+2 \sqrt{3}}-\sqrt{3}=1+\sqrt{3}-\sqrt{3}=1
$$

5.2 Part B

Notice that $6+4 \sqrt{2}=4+4 \sqrt{2}+(\sqrt{2})^{2}=(2+\sqrt{2})^{2}$. Therefore,

$$
\sqrt{6+4 \sqrt{2}}-\sqrt{2}=2+\sqrt{2}-\sqrt{2}=2
$$

$6 \quad 3.6$

6.1 Part A

We first apply the triangle inequality to $a+b$ and c to get

$$
|a+b+c| \leq|a+b|+|c|
$$

Next, we apply the triangle inequality to a and b on the right hand side of the above equation to get

$$
|a+b|+|c| \leq|a|+|b|+|c|
$$

Putting these two inequalities together, we find that

$$
|a+b+c| \leq|a|+|b|+|c|
$$

as desired.

6.2 Part B

We have proved the base case in part A. Assume the statement holds for an integer k. Now, we have

$$
\begin{aligned}
\left|a_{1}+\cdots+a_{k}+a_{k+1}\right| & \leq\left|a_{1}+\cdots+a_{k}\right|+\left|a_{k+1}\right| \\
& \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{k}\right|+\left|a_{k+1}\right|
\end{aligned}
$$

by the inductive hypothesis. This completes the inductive step and the proof.

$7 \quad 4.11$

We know that $a<a+\frac{b-a}{k}<b$ and $a+\frac{b-a}{k}$ is a rational number for any integer $k \geq 2$. Since there are infinitely many integers, there must be an infinite amount of rational numbers between a and b.

$8 \quad 4.14$

8.1 Part A

First we show $\sup (A)+\sup (B)$ is a valid upper bound. For any $a \in A$ and $b \in B$, we have

$$
a+b \leq \sup (A)+b \leq \sup (A)+\sup (B)
$$

Next, we show that it is the least upper bound. Assume there is a lower upper bound, so that we can write it as $\sup (A)+\sup (B)-2 \epsilon$, where $\epsilon>0$. But we know that there exists a $a \in A$ such that $a>\sup (A)-\epsilon$. Likewise, we know that there exists a $b \in B$ such that $b>\sup (B)-\epsilon$. Adding these two together yields

$$
a+b>\sup (A)+\sup (B)-2 \epsilon
$$

showing that the lower upper bound is not valid. Therefore, $\sup (A+B)=\sup (A)+\sup (B)$, as desired.

8.2 Part B

First we show $\inf (A)+\inf (B)$ is a valid lower bound. For any $a \in A$ and $b \in B$, we have

$$
a+b \geq \inf (A)+b \geq \inf (A)+\inf (B)
$$

Next, we show that it is the greatest lower bound. Assume there is a greater lower bound, so that we can write it as $\inf (A)+\inf (B)+2 \epsilon$, where $\epsilon>0$. But we know that there exists a $a \in A$ such that $a<\inf (A)+\epsilon$. Likewise, we know that there exists a $b \in B$ such that $b<\inf (B)+\epsilon$. Adding these two together yields

$$
a+b<\inf (A)+\inf (B)+2 \epsilon
$$

showing that the greater lower bound is not valid. Therefore, $\inf (A+B)=\inf (A)+\inf (B)$, as desired.

$9 \quad 7.5$

9.1 Part A

We know that

$$
\left(\sqrt{n^{2}+1}-n\right)\left(\sqrt{n^{2}+1}+n\right)=n^{2}+1-n^{2}=1
$$

which means we can rewrite

$$
s_{n}=\frac{1}{\sqrt{n^{2}+1}+n}
$$

But we know that

$$
\lim \sqrt{n^{2}+1}+n=\infty
$$

so

$$
\lim s_{n}=0
$$

9.2 Part B

We know that

$$
\left(\sqrt{n^{2}+n}-n\right)\left(\sqrt{n^{2}+n}+n\right)=n^{2}+n-n^{2}=n
$$

which means we can rewrite

$$
s_{n}=\frac{n}{\sqrt{n^{2}+n}+n}=\frac{1}{\sqrt{1+\frac{1}{n}}+1}
$$

Since $\lim \frac{1}{n}=0$, we have

$$
\lim s_{n}=\frac{1}{\sqrt{1}+1}=\frac{1}{2}
$$

9.3 Part C

We know that

$$
\left(\sqrt{4 n^{2}+n}-2 n\right)\left(\sqrt{4 n^{2}+n}+2 n\right)=4 n^{2}+n-4 n^{2}=n
$$

which means we can rewrite

$$
s_{n}=\frac{n}{\sqrt{4 n^{2}+n}+2 n}=\frac{1}{\sqrt{4+\frac{1}{n}}+2}
$$

Since $\lim \frac{1}{n}=0$, we have

$$
\lim s_{n}=\frac{1}{\sqrt{4}+2}=\frac{1}{4}
$$

