
Math 104 Homework 1

Jonathan Guo

January 28, 2022

1 1.10

We proceed by induction. The base case is n = 1: we have

(2(1) + 1) + · · ·+ (4(1)− 1) = 3 = 3(1)2

Now, assume the statement is true for some k ∈ N. We have

2(k + 1) + 1 + 2(k + 1) + 3 + · · ·+ 4(k + 1)− 1

= 2k + 3 + 2k + 5 + · · ·+ 4k − 1 + 4k + 1 + 4k + 3

= 3k2 + 4k + 1 + 4k + 3− (2k + 1)

= 3k2 + 6k + 3

= 3(k2 + 2k + 1)

= 3(k + 1)2

This concludes the inductive step and the proof.
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2 1.12

2.1 Part A

(a+ b)1 = a+ b =

(
1

0

)
a+

(
1

1

)
b

(a+ b)2 = a2 + 2ab+ b2 =

(
2

0

)
a2 +

(
2

1

)
ab+

(
2

2

)
b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3 =

(
3

0

)
a3 +

(
3

1

)
a2b+

(
3

2

)
ab2 +

(
3

3

)
b3

2.2 Part B (
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
n!(n− k + 1)

k!(n− k + 1)!
+

n!k

k!(n− k + 1)!

=
n!(n+ 1)

k!(n− k + 1)!

=
(n+ 1)!

k!(n− k + 1)!

=

(
n+ 1

k

)

2.3 Part C

We have verified the base cases n = 1, 2, 3 in part A. Assume that the binomial theorem holds for
some n ∈ N. Then, we have

(a+ b)n+1 = (a+ b)n(a+ b)

=

[(
n

0

)
an +

(
n

1

)
an−1b+ · · ·+

(
n

n

)
bn
]
(a+ b)

Now for each coefficient ajbn+1−j in the resulting expression (except for j = 0, n + 1), it can come
from either ajbn−j · b or aj−1bn+1−j · a. By the inductive hypothesis, the coefficients of the above
are

(
n
j

)
and

(
n

j−1

)
, respectively, which means their sum is

(
n+1
j

)
by part B, and this is the coefficient

of ajbn+1−j . Finally, for j = 0 and n+1, We have
(
n+1
0

)
=

(
n+1
n+1

)
= 1 which is true. This completes

the inductive step and the proof.
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3 2.1
√
3 must satisfy the equation x2 − 3 = 0. By the rational root theorem, the only possible roots are

[1, -1, 3, -3]. But plugging each one in, we find that

12 − 3 = −2 ̸= 0

(−1)2 − 3 = −2 ̸= 0

32 − 3 = 6 ̸= 0

(−3)2 − 3 = 6 ̸= 0

This means that
√
3 is irrational.

√
5 must satisfy the equation x2 − 5 = 0. By the rational root theorem, the only possible roots are

[1, -1, 5, -5]. But plugging each one in, we find that

12 − 5 = −4 ̸= 0

(−1)2 − 5 = −4 ̸= 0

52 − 5 = 20 ̸= 0

(−5)2 − 5 = 20 ̸= 0

This means that
√
5 is irrational.

√
7 must satisfy the equation x2 − 7 = 0 By the rational root theorem, the only possible roots are

[1, -1, 7, -7] But plugging each one in, we find that

12 − 7 = −6 ̸= 0

(−1)2 − 7 = −6 ̸= 0

72 − 7 = 42 ̸= 0

(−7)2 − 7 = 42 ̸= 0

This means that
√
7 is irrational.

√
24 must satisfy the equation x2 = 24. By the rational root theorem, the only possible roots are

[1, -1, 2, -2, 3, -3, 4, -4, 6, -6, 8, -8, 12, -12, 24, -24]. But plugging each one in, we find that

12 − 24 = −23 ̸= 0

(−1)2 − 24 = −23 ̸= 0

22 − 24 = −20 ̸= 0

(−2)2 − 24 = −20 ̸= 0

32 − 24 = −15 ̸= 0

(−3)2 − 24 = −15 ̸= 0

42 − 24 = −8 ̸= 0
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(−4)2 − 24 = −8 ̸= 0

62 − 24 = 12 ̸= 0

(−6)2 − 24 = 12 ̸= 0

82 − 24 = 40 ̸= 0

(−8)2 − 24 = 40 ̸= 0

122 − 24 = 120 ̸= 0

(−12)2 − 24 = 120 ̸= 0

242 − 24 = 552 ̸= 0

(−24)2 − 24 = 552 ̸= 0

This means that
√
24 is irrational.

√
31 must satisfy the equation x2 = 31. By the rational root theorem, the only possible roots are

[1, -1, 31, -31]. But plugging each one in, we find that

12 − 31 = −30 ̸= 0

(−1)2 − 31 = −30 ̸= 0

312 − 31 = 930 ̸= 0

(−31)2 − 31 = 930 ̸= 0

This means that
√
31 is irrational.
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4 2.2
3
√
2 must satisfy the equation x3 − 2 = 0 By the rational root theorem, the only possible roots are

[1, -1, 2, -2] But plugging each one in, we find that

13 − 2 = −1 ̸= 0

(−1)3 − 2 = −3 ̸= 0

23 − 2 = 6 ̸= 0

(−2)3 − 2 = −10 ̸= 0

This means that 3
√
2 is irrational.

7
√
5 must satisfy the equation x7 − 5 = 0 By the rational root theorem, the only possible roots are

[1, -1, 5, -5] But plugging each one in, we find that

17 − 5 = −4 ̸= 0

(−1)7 − 5 = −6 ̸= 0

57 − 5 = 78120 ̸= 0

(−5)7 − 5 = −78130 ̸= 0

This means that 7
√
5 is irrational.

4
√
13 must satisfy the equation x4 − 13 = 0 By the rational root theorem, the only possible roots are

[1, -1, 13, -13] But plugging each one in, we find that

14 − 13 = −12 ̸= 0

(−1)4 − 13 = −12 ̸= 0

134 − 13 = 28548 ̸= 0

(−13)4 − 13 = 28548 ̸= 0

This means that 4
√
13 is irrational.
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5 2.7

5.1 Part A

Notice that 4 + 2
√
3 = 1 + 2

√
3 + (

√
3)2 = (1 +

√
3)2. Therefore,√

4 + 2
√
3−

√
3 = 1 +

√
3−

√
3 = 1

5.2 Part B

Notice that 6 + 4
√
2 = 4 + 4

√
2 + (

√
2)2 = (2 +

√
2)2. Therefore,√

6 + 4
√
2−

√
2 = 2 +

√
2−

√
2 = 2

6



6 3.6

6.1 Part A

We first apply the triangle inequality to a+ b and c to get

|a+ b+ c| ≤ |a+ b|+ |c|

Next, we apply the triangle inequality to a and b on the right hand side of the above equation to get

|a+ b|+ |c| ≤ |a|+ |b|+ |c|

Putting these two inequalities together, we find that

|a+ b+ c| ≤ |a|+ |b|+ |c|

as desired.

6.2 Part B

We have proved the base case in part A. Assume the statement holds for an integer k. Now, we have

|a1 + · · ·+ ak + ak+1| ≤ |a1 + · · ·+ ak|+ |ak+1|
≤ |a1|+ |a2|+ · · ·+ |ak|+ |ak+1|

by the inductive hypothesis. This completes the inductive step and the proof.
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7 4.11

We know that a < a+ b−a
k < b and a+ b−a

k is a rational number for any integer k ≥ 2. Since there
are infinitely many integers, there must be an infinite amount of rational numbers between a and b.
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8 4.14

8.1 Part A

First we show sup(A) + sup(B) is a valid upper bound. For any a ∈ A and b ∈ B, we have

a+ b ≤ sup(A) + b ≤ sup(A) + sup(B)

Next, we show that it is the least upper bound. Assume there is a lower upper bound, so that we
can write it as sup(A) + sup(B)− 2ϵ, where ϵ > 0. But we know that there exists a a ∈ A such that
a > sup(A)− ϵ. Likewise, we know that there exists a b ∈ B such that b > sup(B)− ϵ. Adding these
two together yields

a+ b > sup(A) + sup(B)− 2ϵ

showing that the lower upper bound is not valid. Therefore, sup(A + B) = sup(A) + sup(B), as
desired.

8.2 Part B

First we show inf(A) + inf(B) is a valid lower bound. For any a ∈ A and b ∈ B, we have

a+ b ≥ inf(A) + b ≥ inf(A) + inf(B)

Next, we show that it is the greatest lower bound. Assume there is a greater lower bound, so that
we can write it as inf(A) + inf(B) + 2ϵ, where ϵ > 0. But we know that there exists a a ∈ A such
that a < inf(A) + ϵ. Likewise, we know that there exists a b ∈ B such that b < inf(B) + ϵ. Adding
these two together yields

a+ b < inf(A) + inf(B) + 2ϵ

showing that the greater lower bound is not valid. Therefore, inf(A + B) = inf(A) + inf(B), as
desired.
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9 7.5

9.1 Part A

We know that
(
√
n2 + 1− n)(

√
n2 + 1 + n) = n2 + 1− n2 = 1

which means we can rewrite

sn =
1√

n2 + 1 + n

But we know that
lim

√
n2 + 1 + n = ∞

so
lim sn = 0

9.2 Part B

We know that
(
√
n2 + n− n)(

√
n2 + n+ n) = n2 + n− n2 = n

which means we can rewrite

sn =
n√

n2 + n+ n
=

1√
1 + 1

n + 1

Since lim 1
n = 0, we have

lim sn =
1√
1 + 1

=
1

2

9.3 Part C

We know that
(
√
4n2 + n− 2n)(

√
4n2 + n+ 2n) = 4n2 + n− 4n2 = n

which means we can rewrite

sn =
n√

4n2 + n+ 2n
=

1√
4 + 1

n + 2

Since lim 1
n = 0, we have

lim sn =
1√
4 + 2

=
1

4
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