Math 104 Homework 10

Jonathan Guo

April 22, 2022

Contents

1 Q 1: Ross 33.4 2
2 Q 2: Ross 33.7 3
2.1 Part A 3
2.2 Part B 3
3 Q 3: Ross 33.13 4
4 Q 4: Ross 35.4 5
4.1 Part A 5
4.2 Part B 5
5 Q 5: Ross 35.9a 6

1 Q 1: Ross 33.4

Let

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ -1 & x \notin \mathbb{Q}\end{cases}
$$

Here $f(x)$ is not integral, but $|f(x)|=1$ which is integrable.

2 Q 2: Ross 33.7

2.1 Part A

$$
\begin{aligned}
U\left(f^{2}, P\right)-L\left(f^{2}, P\right) & =\sum \sup x_{i}^{2}-\inf x_{i}^{2} \\
& \leq \sum M_{i}^{2}-m_{i}^{2} \\
& =\sum\left(M_{i}-m_{i}\right)\left(M_{i}+m_{i}\right) \\
& \leq \sum 2 B\left(M_{i}-m_{i}\right) \\
& =2 B(U(f, P)-L(f, P))
\end{aligned}
$$

2.2 Part B

If f is integrable this means that $U(f, P)=L(f, P)$. But this implies that $U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 0$. Since $U\left(f^{2}, P\right) \geq L\left(f^{2}, P\right)$, this implies that they are equal, which shows that f^{2} is integrable as well.

3 Q 3: Ross 33.13

Suppose not, for the sake of contradiction. Then, $f(x)>g(x) \forall x \in[a, b]$ (without loss of generality; otherwise just switch f and g). However, then we have

$$
U(f, P)=\sum_{P} \sup f>\sum_{P} \sup g=U(g, P)
$$

This shows that the two integrals are actually not equal, a contradiction.

4 Q 4: Ross 35.4

4.1 Part A

We know

$$
\frac{d F(x)}{d x}=\cos x
$$

So

$$
d F(x)=\cos x d x
$$

Then,

$$
\int_{0}^{\pi / 2} x d F(x)=\int_{0}^{\pi / 2} x \cos x d x=g(\pi / 2)-g(0)
$$

where

$$
g(x)=x \sin x-\cos x
$$

This evaluates to

$$
g(\pi / 2)-g(0)=\frac{\pi}{2}-1
$$

4.2 Part B

We know

$$
\begin{gathered}
\frac{d F(x)}{d x}=\cos x \\
d F(x)=\cos x d x
\end{gathered}
$$

Then,

$$
\int_{-\pi / 2}^{\pi / 2} x d F(x)=\int_{-\pi / 2}^{\pi / 2} x \cos x d x=g(\pi / 2)-g(-\pi / 2)
$$

where

$$
g(x)=x \sin x-\cos x
$$

This evaluates to

$$
g(\pi / 2)-g(-\pi / 2)=0
$$

5 Q 5: Ross 35.9a

Let $g(x)=\inf _{[a, b]} f$, so g is a constant function. Then, $\int_{a}^{b} g d F$ lower bounds $\int_{a}^{b} f d F$. Similarly, if $h(x)=\sup _{[a, b]} f$ then $\int_{a}^{b} h d F$ upper bounds $\int_{a}^{b} f d F$. But since g and h are constants, the bounding intervals evaluate to $g(F(b)-F(a))$ and $h(F(b)-F(a))$ respectively. By intermediate value theorem, there exists a $x \in[a, b]$ such that $f(x)(F(b)-F(a))$ is the actual value of the integral.

