Math 104 Homework 10

Jonathan Guo

April 22, 2022

Contents

1	Q 1: Ross 33.4	2
2	Q 2: Ross 33.7 2.1 Part A 2.2 Part B	3 3 3
3	Q 3: Ross 33.13	4
4	Q 4: Ross 35.4 4.1 Part A 4.2 Part B	5 5 5
5	Q 5: Ross 35.9a	6

1 Q 1: Ross 33.4

Let

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ -1 & x \notin \mathbb{Q} \end{cases}$$

Here f(x) is not integral, but |f(x)| = 1 which is integrable.

2 Q 2: Ross 33.7

2.1 Part A

$$U(f^2, P) - L(f^2, P) = \sum \sup x_i^2 - \inf x_i^2$$

$$\leq \sum M_i^2 - m_i^2$$

$$= \sum (M_i - m_i)(M_i + m_i)$$

$$\leq \sum 2B(M_i - m_i)$$

$$= 2B(U(f, P) - L(f, P))$$

2.2 Part B

If f is integrable this means that U(f, P) = L(f, P). But this implies that $U(f^2, P) - L(f^2, P) \le 0$. Since $U(f^2, P) \ge L(f^2, P)$, this implies that they are equal, which shows that f^2 is integrable as well.

3 Q 3: Ross 33.13

Suppose not, for the sake of contradiction. Then, $f(x) > g(x) \forall x \in [a, b]$ (without loss of generality; otherwise just switch f and g). However, then we have

$$U(f,P) = \sum_{P} \sup f > \sum_{P} \sup g = U(g,P)$$

This shows that the two integrals are actually not equal, a contradiction.

4 Q 4: Ross 35.4

4.1 Part A

We know

$$\frac{dF(x)}{dx} = \cos x$$

 \mathbf{so}

$$dF(x) = \cos x \, dx$$

Then,

$$\int_0^{\pi/2} x \, dF(x) = \int_0^{\pi/2} x \cos x \, dx = g(\pi/2) - g(0)$$

where

$$g(x) = x\sin x - \cos x$$

This evaluates to

$$g(\pi/2) - g(0) = \boxed{\frac{\pi}{2} - 1}$$

4.2 Part B

We know

$$\frac{dF(x)}{dx} = \cos x$$

 \mathbf{so}

$$dF(x) = \cos x \, dx$$

Then,

$$\int_{-\pi/2}^{\pi/2} x \, dF(x) = \int_{-\pi/2}^{\pi/2} x \cos x \, dx = g(\pi/2) - g(-\pi/2)$$

where

$$g(x) = x \sin x - \cos x$$

This evaluates to

$$g(\pi/2) - g(-\pi/2) = 0$$

5 Q 5: Ross 35.9a

Let $g(x) = \inf_{[a,b]} f$, so g is a constant function. Then, $\int_a^b g \, dF$ lower bounds $\int_a^b f \, dF$. Similarly, if $h(x) = \sup_{[a,b]} f$ then $\int_a^b h \, dF$ upper bounds $\int_a^b f \, dF$. But since g and h are constants, the bounding intervals evaluate to g(F(b) - F(a)) and h(F(b) - F(a)) respectively. By intermediate value theorem, there exists a $x \in [a,b]$ such that f(x)(F(b) - F(a)) is the actual value of the integral.