Math 104 Homework 11

Jonathan Guo

April 29, 2022

Contents

1	Q 1: Ross 34.2 1.1 Part A 1.2 Part B	2 2 2
2	Q 2: Ross 34.5	3
3	Q 3: Ross 34.7	4

1 Q 1: Ross 34.2

1.1 Part A

Let F be the antiderivative of e^{t^2} . Then, notice that

$$\lim_{x \to 0} \frac{1}{x} \int_0^x e^{t^2} dt = \lim_{x \to 0} \frac{F(x) - F(0)}{x - 0}$$

This is just the derivative of F at 0. The derivative of F is just e^{t^2} and if you plug in 0 you get 1.

1.2 Part B

Let F be the antiderivative of e^{t^2} . Then, notice that

$$\lim_{h \to 0} \frac{1}{h} \int_{3}^{3+h} e^{t^2} dt = \lim_{h \to 0} \frac{F(3+h) - F(h)}{3+h-h}$$

This is just the derivative of F at 3. The derivative of F is just e^{t^2} and if you plug in 3 you get e^9 .

2 Q 2: Ross 34.5

We want to show that

$$\lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

exists. Let G be the antiderivative of f. Then, we have F(x+h) = G(x+h+1) - G(x+h-1) and F(x) = G(x+1) - G(x-1). So the above limit becomes

$$\lim_{h \to 0} \frac{G(x+h+1) - G(x+h-1) - G(x+1) + G(x-1)}{h}$$

Rearranging terms, we get the limit is

$$\lim_{h \to 0} \frac{G(x+h+1) - G(x+1)}{h} - \lim_{h \to 0} \frac{G(x+h-1) - G(x-1)}{h}$$

The term on the left is just the derivative of G at x + 1, which exists since we know it is f(x + 1). The term on the right is just the derivative of G at x - 1, which exists since we know it is f(x - 1). Therefore the original limit exists and therefore F is differentiable and the derivative is equal to

$$f(x+1) - f(x-1)$$

3 Q 3: Ross 34.7

Let $u = 1 - x^2$. So $du = -2x \, dx$. The bounds are now from 1 to 0. So we have

$$\int_0^1 x\sqrt{1-x^2} \, dx = \int_1^0 -0.5\sqrt{u} \, du = 0.5 \int_0^1 \sqrt{u} \, du = 0.5 \left[\frac{u^{3/2}}{1.5}\right]_0^1$$
$$= \boxed{\frac{1}{3}}$$