Math 104 Homework 11

Jonathan Guo

April 29, 2022

Contents

1 Q 1: Ross 34.2 2
1.1 Part A 2
1.2 Part B 2
2 Q 2: Ross 34.5 3
3 Q 3: Ross 34.7 4

1 Q 1: Ross 34.2

1.1 Part A

Let F be the antiderivative of $e^{t^{2}}$. Then, notice that

$$
\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t=\lim _{x \rightarrow 0} \frac{F(x)-F(0)}{x-0}
$$

This is just the derivative of F at 0 . The derivative of F is just $e^{t^{2}}$ and if you plug in 0 you get 1 .

1.2 Part B

Let F be the antiderivative of $e^{t^{2}}$. Then, notice that

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h} e^{t^{2}} d t=\lim _{h \rightarrow 0} \frac{F(3+h)-F(h)}{3+h-h}
$$

This is just the derivative of F at 3 . The derivative of F is just $e^{t^{2}}$ and if you plug in 3 you get e^{9}.

2 Q 2: Ross 34.5

We want to show that

$$
\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}
$$

exists. Let G be the antiderivative of f. Then, we have $F(x+h)=G(x+h+1)-G(x+h-1)$ and $F(x)=G(x+1)-G(x-1)$. So the above limit becomes

$$
\lim _{h \rightarrow 0} \frac{G(x+h+1)-G(x+h-1)-G(x+1)+G(x-1)}{h}
$$

Rearranging terms, we get the limit is

$$
\lim _{h \rightarrow 0} \frac{G(x+h+1)-G(x+1)}{h}-\lim _{h \rightarrow 0} \frac{G(x+h-1)-G(x-1)}{h}
$$

The term on the left is just the derivative of G at $x+1$, which exists since we know it is $f(x+1)$. The term on the right is just the derivative of G at $x-1$, which exists since we know it is $f(x-1)$. Therefore the original limit exists and therefore F is differentiable and the derivative is equal to

$$
f(x+1)-f(x-1)
$$

3 Q 3: Ross 34.7

Let $u=1-x^{2}$. So $d u=-2 x d x$. The bounds are now from 1 to 0 . So we have

$$
\begin{gathered}
\int_{0}^{1} x \sqrt{1-x^{2}} d x=\int_{1}^{0}-0.5 \sqrt{u} d u=0.5 \int_{0}^{1} \sqrt{u} d u=0.5\left[\frac{u^{3 / 2}}{1.5}\right]_{0}^{1} \\
=\frac{1}{3}
\end{gathered}
$$

