Math 104 Homework 2

Jonathan Guo

February 04, 2022

1 Ross 9.9

1.1 Part A

We proceed by contradiction. Assume $\lim t_{n}$ is finite. Then, consider $\epsilon=1$. We know that there exists an integer N such that $t_{n}<\lim t_{n}+\epsilon=\lim t_{n}+1$ for all $n>N$. However, we also know that there exists an integer M such that $s_{m}>\lim t_{n}+1$ for all $m>M$. Let $z=\max (M, N)$. But this means that $s_{z}>t_{z}$! This violates the assumption that $s_{n} \leq t_{n}$. This means that we must have $\lim t_{n}=+\infty$.

1.2 Part B

We proceed by contradiction. Assume $\lim s_{n}$ is finite. Then, consider $\epsilon=1$. We know that there exists an integer M such that $s_{n}>\lim t_{n}-\epsilon=\lim t_{n}-1$ for all $n>N$. However, we also know that there exists an integer N such that $t_{n}<\lim s_{n}-1$ for all $n>N$. Let $z=\max (M, N)$. But this means that $s_{z}>t_{z}$! This violates the assumption that $s_{n} \leq t_{n}$. This means that we must have $\lim s_{n}=-\infty$.

1.3 Part C

Let $S=\lim s_{n}$ and $T=\lim t_{n}$. We proceed by contradiction. Assume $\lim s_{n}>\lim t_{n}$. Then, consider any $\epsilon>0$ such that $\epsilon<0.5(S-T)$. This means that there exists an integer M such that $s_{m}>s-\epsilon$ for all $m \geq M$. Likewise, there exists an integer N such that $t_{n}<t+\epsilon$ for all $n \geq N$. However, let $z=\max (M, N)$. We have

$$
s_{z}>s-\epsilon>s-0.5(S-T)=0.5 T-0.5 S=T+\epsilon>t_{z}
$$

which violates the assumption that $s_{n} \leq t_{n}$. Thus, we must have $\lim s_{n} \leq \lim t_{n}$, as desired.

2 Ross 9.15

Let b be any integer greater than a. Notice that $\frac{a^{n}}{n!}>0$ for all positive integer n, so the limit is non-negative. Then, for $n>b$, we have

$$
\lim \frac{a^{n}}{n!}=\lim a^{b} \frac{a^{n-b}}{n!}=a^{b} \lim \frac{a^{n-b}}{n!} \leq a^{b} \lim \frac{a^{n-b}}{b^{n-b}}=a^{b} \lim \left(\frac{a}{b}\right)^{n-b}=0
$$

since $a<b$. Therefore, we have shown that $\lim \frac{a^{n}}{n!}=0$ as desired.

3 Ross 10.7

Consider the sequence $a_{n}=(1,0.104,0.010816,0.001124864, \ldots)$ so $a_{n}=0.104^{n}$ (let this be $0-$ indexed). We know that $\lim a_{n}=0$. For every a_{n}, we also know that there exists a $s \in S$ such that $s>\sup S-a_{n}$. Let $s_{n}=$ that s for all values of n.
Now, I show that $\lim s_{n}=\sup S$. Consider any $\epsilon>0$. We know that there exists a positive integer N such that $a_{n}<\epsilon$ for all $n \geq N$. However, this means that $s_{n}>\sup S-a_{n}>\sup S-\epsilon$ for all $n \geq N$. Since $s_{n}<\sup S$, this proves that $\lim s_{n}=\sup S$ as desired.

4 Ross 10.8

We want to show that $\sigma_{n}>\sigma_{n-1}$ for all integer $n>1$. Instead, we show that $n \sigma_{n}>n \sigma_{n-1}$. We have

$$
\begin{aligned}
n \sigma_{n} & =s_{1}+s_{2}+\cdots+s_{n} \\
& =\frac{n}{n-1} s_{1}-\frac{1}{n-1} s_{1}+\frac{n}{n-1} s_{2}-\frac{1}{s-1} s_{2}+\cdots+\frac{n}{n-1} s_{n-1}-\frac{1}{s-1} s_{n-1}+s_{n} \\
& =\frac{n}{n-1}\left(s_{1}+s_{2}+\cdots+s_{n-1}\right)+\frac{1}{n-1}\left(s_{n}-s_{1}\right)+\frac{1}{n-1}\left(s_{n}-s_{2}\right)+\cdots+\frac{1}{n-1}\left(s_{n}-s_{n-1}\right) \\
& >n \sigma_{n-1}
\end{aligned}
$$

$5 \quad$ Ross 10.9

5.1 Part A

$$
\begin{gathered}
s_{2}=\frac{1}{2}(1)^{2}=\frac{1}{2} \\
s_{3}=\frac{2}{3}\left(\frac{1}{2}\right)^{2}=\frac{1}{6} \\
s_{4}=\frac{3}{4}\left(\frac{1}{6}\right)^{2}=\frac{1}{48}
\end{gathered}
$$

5.2 Part B

Since $s_{2}, s_{3}, s_{4}<1$, we have for $n>4$:

$$
s_{n+1}=\frac{n}{n+1}\left(s_{n}\right)^{2}>\left(s_{n}\right)^{2}>s_{n}
$$

since $s_{n}<1$. This shows inductively that (a) the sequence $\left(s_{n}\right)$ is decreasing and (b) $s_{n}<1$. Notice that $s_{2}, s_{3}, s_{4}>0$, and both $\frac{n}{n+1}$ and s_{n}^{2} are positive. So $\left(s_{n}\right)$ is bounded below by 0 . Since it is decreasing and bounded below by 0 , the limit exists.

5.3 Part C

We show that $s_{n} \leq \frac{1}{n}$. We proceed by induction. We have

$$
s_{n+1}=\frac{n}{n+1}\left(s_{n}\right)^{2} \leq \frac{n}{n+1} s_{n} \leq \frac{n}{n+1} \frac{1}{n}=\frac{1}{n+1}
$$

Since $\lim \frac{1}{n}=0$, we have $\lim s_{n} \leq 0$. But we also have $s_{n} \geq 0$ for all n, so $\lim s_{n} \geq 0$. This means that $\lim s_{n}=0$ as desired.

6 Ross 10.10

6.1 Part A

$$
\begin{gathered}
s_{2}=\frac{1}{3}(1+1)=\frac{2}{3} \\
s_{3}=\frac{1}{3}\left(\frac{2}{3}+1\right)=\frac{5}{9} \\
s_{4}=\frac{1}{3}\left(\frac{5}{9}+1\right)=\frac{14}{27}
\end{gathered}
$$

6.2 Part B

The base case is clear. For the inductive step, we have

$$
s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)>\frac{1}{3}\left(\frac{1}{2}+1\right)=\frac{1}{3} \cdot \frac{3}{2}=\frac{1}{2}
$$

which completes the induction.

6.3 Part C

By part B, we know that $1<2 s_{n}$, so

$$
s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)<\frac{1}{3}\left(s_{n}+2 s_{n}\right)=s_{n}
$$

6.4 Part D

$\lim s_{n}$ exists because it is decreasing and bounded below by 0.5 . So, let $S=\lim s_{n}$. We know that S must satisfy the equation

$$
S=\frac{1}{3}(S+1)
$$

Solving, we find that

$$
2 S+1
$$

or

$$
S=\lim s_{n}=\frac{1}{2}
$$

7 Ross 10.11

7.1 Part A

First, t_{n} is bounded below by 0 because $1-\frac{4}{n^{2}}>0$ and $t_{1}>0$. Also, t_{n} is decreasing because $1-\frac{4}{n^{2}}<1$. Thus the limit exists.

7.2 Part B

Using a program we find that $t_{1000000} \approx 0.63661977340318$. We also have $\frac{2}{\pi} \approx 0.63661977238578$, so it seems to be around $\frac{2}{\pi}$.

8 Squeeze Test

By 9.9 c on $\left(b_{n}\right)$ and $\left(c_{n}\right)$, we have $\lim b_{n} \leq \lim c_{n}=L$. By 9.9 c on $\left(a_{n}\right)$ and $\left(b_{n}\right)$, we have $\lim b_{n} \geq \lim a_{n}=L$. These two show that $\lim b_{n}=L$, as desired.

