Math 104 Homework 6

Jonathan Guo

March 11, 2022

Contents

Q Q 1 2
2 Q 2 草
$3 \mathrm{Q} 3 \quad 4$
4 Q 4 5

1 Q 1

True. Consider any sequence of points $\left(a_{n}\right)=\left(b_{n}, c_{n}\right)$ in $[0,1]^{2}$. We know that there exists a subsequence of the $\left(b_{n}\right)$ that converges to some point $x \in[0,1]$. Consider the subsequence of $\left(a_{n}\right)$ that corresponds to this subsequence, so $\left(a_{n}\right)_{k}$. We know that there exists a subsequence of the $\left(c_{n}\right)$ in this one that converges to some point $y \in[0,1]$. Now, since the $\left(b_{n}\right)$ of this already converges, we know that any subsequence of it also converges to $x \in[0,1]$. Thus, if we take this subsequence, it will converge to $(x, y) \in[0,1]^{2}$, which shows that $[0,1]^{2}$ is sequentially compact.

2 Q 2

E is uncountable. There is a bijection between E and the set of real numbers whose decimal expansion only consists of the digits 0 and 1 by simply replacing 4 with 0 and 7 with 1 . Then, there is a bijection between this set and the set of real numbers whose binary representation only consists of the digits 0 and 1 . This set is just $[0,1]$ which is uncountable. Therefore, E is uncountable.
However, E is sequentially compact because any sequence in E is bounded and therefore has a convergent subsequence. Also, since E is closed, the convergent point is in E, which shows that it is sequentially compact and therefore compact.

3 Q 3

If the set of A_{i} is finite then no. But if it is countably infinite then yes. For example, take $A_{i}=\left(\frac{1}{i},(0,1)\right)$ which is a subset of \mathbb{R}^{2}. Each of these is a set. We will show there is a limit point in the closure of the union of these $A_{i} \mathrm{~s}$ that is not in the closure of any one of the $A_{i} \mathrm{~s}$. Consider the sequence $a_{n}=\frac{1}{n}, \frac{1}{n}$. Each a_{i} is in A_{i}. The sequence approaches $(0,0)$ so that is in \bar{B}. However, $(0,0)$ is in none of the A_{i} s because the x-coordinate of any limit point of A_{i} must be $\frac{1}{i}$. Therefore it is possible that the inclusion is a strict inclusion.

$4 \quad$ Q 4

E from question 2 is a closed set, but it is not a countable union of closed sets because it is an uncountable union of closed sets.

