Math 104 Homework 8

Jonathan Guo

April 1, 2022

Contents

1	Q 1	2
2	Q 2	3
3	Q 3	4

1 Q 1

We show that (f_n) converges uniformly to the function $f(x) = \frac{1}{2}$. Let $\epsilon > 0$. Then, choose N such that $\frac{N+1}{2N-1} - 0.5 < \epsilon$ and $\frac{N-1}{2N+1} - 0.5 > \epsilon$. Then, because $f_N(x)$ and $f_n(x)$ for n > N will fall into those ranges, the distance from $f_n(x)$ to f(x) will be less than ϵ for all x. This shows the uniform convergence.

$\mathbf{2}$ Q 2

Let $f_n(x) = \sum_{k=1}^n a_k x^k$. Each $f_n(x)$ is continuous because it is the sum of finitely many polynomials. Each $f_n(x)$ is bounded between $+\sum |a_k|$ and $-\sum |a_k|$ since $-1 \le x \le 1$. Also, $f_n \to f$ uniformly. This is because you can bound the distance between $f_n(x)$ and f(x) by something like $x^n \max a_k/(1-x)$. x) which is a monotonically decreasing expression in n since $x \in [-1, 1]$. Thus, since the f_n are continuous and bounded and uniformly converges to f, f is also continuous. For the second part, we can see that $\sum n^{-2} = \pi^2/6 < +\infty$ so we can apply the above theorem.

3 Q 3

We show that f converges on (-1,1). Consider any $a \in (0,1)$. We will show that f has uniform convergence on [-a, a] using Weierstrass M test. Define $g_n(x) = x^n$. Then, we have $|g_n(x)| \le a^n$ for convergence on [-a, a] using weierstrass in test. Define $g_n(x) = x$. Then, we have $|g_n(x)| \leq a$ for all n. Also, we have $\sum a^n = \frac{a}{1-a}$ which converges since a < 1. Therefore, by Weierstrass M test, $\sum g_n(x)$ (which is equal to f converges uniformly on [-a, a], as desired. Consider $f(x) - f_n(x)$ where $f_n(x) = \sum_{k=1}^n x^k$. This is $x^{n+1} + x^{n+2} + \cdots = \frac{x^{n+1}}{1-x}$. Now, consider a $\epsilon > 0$. For any n, we can always find a x such that this difference is greater than ϵ . This is because

the difference is an increasing function of x (numerator increases and denominator decreases) and it is unbounded as $x \to 1$. This shows that f does not converge uniformly.