Math 104 Homework 9

Jonathan Guo

April 15, 2022

Contents

1 Q 1 2
2 Q 2 3
3 Q 3 4
4 Q 4 5
5 Q 5 6
5.1 Part A 6
5.2 Part B 6
5.3 Part C 6
5.4 Part D 6

1 Q 1

Consider the textbook function

$$
f(x)= \begin{cases}0 & x \leq 0 \\ e^{-1 / x} & x>0\end{cases}
$$

We know that this is infinitely differentiable at 0 . We also know it approaches 0 when $x \rightarrow 0$. Now consider the function $g(x)=1-f(1-x)$. This function approaches 1 when $x \rightarrow 1$ and is also infinitely differentiable there. So how do we connect these two? Well what we do is that we scale $f(x)$ by $0.5 / f(0.5)$. The good thing with this is that $g(0.5)$ is also 0.5 now. This means they are connected. And since f is infinitely differentiable, so is this new piecewise function. So our answer is something like

$$
h(x)= \begin{cases}0 & x \leq 0 \\ \frac{0.5}{e^{-2}} e^{-1 / x} & 0<x \leq 0.5 \\ \frac{0.5}{e^{-2}}\left(1-e^{-1 /(1-x)}\right) & 0.5<x<1 \\ 1 & x \geq 1\end{cases}
$$

2 Q 2

We look at the primitive of

$$
C_{0}+C_{1} x+C_{2} x^{2}+\cdots+C_{n} x^{n}
$$

This is

$$
C_{0} x+\frac{C_{1}}{2} x^{2}+\frac{C_{2}}{3} x^{3}+\cdots+\frac{C_{n}}{n+1} x^{n+1}
$$

Evaluating the primitive at $x=1$, we find that it is equal to

$$
C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\cdots+\frac{C_{n}}{n+1}
$$

which is 0 . Evaluating the primitive at $x=0$, it is just 0 . Since it is 0 everywhere, by the mean value theorem there must be some point $x \in[0,1]$ in which the derivative of the function is 0 . However, the derivative is just the function we are looking at. This proves the statement.

3 Q 3

We have that $\frac{f(t)-f(x)}{t-x}$ is the slope of f between the points t and x, which means it is the value of $f^{\prime}(a)$ for some $a \in(x, t)$ (or (t, x)). Thus, the expression can be replaced with

$$
\left|f^{\prime}(a)-f^{\prime}(x)\right|<\epsilon
$$

where $|a-x|<\delta$. Since f^{\prime} is continuous over a compact set, it is uniformly continuous, so such a δ exists.

$4 \quad$ Q 4

We differentiate it $n-1$ times. We get

$$
f^{(n-1)}(t)=t Q^{(n-1)}(t)+(n-1) Q^{(n-2)}(t)-\beta Q^{(n-1)}(t)
$$

Plugging it in to the formula, we obtain

$$
\begin{gathered}
P(\beta)=\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k} \\
=f(\alpha)+\sum_{k=1}^{n-1} \frac{\left.(\alpha-\beta) Q^{(k)}(\alpha)+k Q^{(k-1)}(\alpha)\right)}{k!}(\beta-\alpha)^{k} \\
=f(\alpha)+\sum_{k=1}^{n-1} \frac{k Q^{(k-1)}(\alpha)}{k!}(\beta-\alpha)^{k}-\sum_{k=1}^{n-1} \frac{Q^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k+1} \\
=f(\alpha)+\sum_{k=0}^{n-2} \frac{Q^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k+1}-\sum_{k=1}^{n-1} \frac{Q^{(k)}(\alpha)}{k!}(\beta-\alpha)^{k+1} \\
=f(\alpha)-\frac{Q^{(n-1)}}{(n-1)!}(\beta-\alpha)^{n}
\end{gathered}
$$

This shows that

$$
f(\alpha)=P(\beta)+\frac{Q^{(n-1)}}{(n-1)!}(\beta-\alpha)^{n}
$$

5 Q 5

5.1 Part A

Assume f has two fixed points. Then, take those two points and apply the mean value theorem. This means that $f^{\prime}(x)=1$ for some x between those two points, which violates the constraint. Therefore, f has less than two fixed points.

5.2 Part B

If f has a fixed point, this means that

$$
t=t+\left(1+e^{t}\right)^{-1}
$$

However, this means that

$$
\left(1+e^{t}\right)^{-1}=0
$$

which is impossible. Thus, f has no fixed points.

5.3 Part C

If there were no fixed points, then we would have $\left|f^{\prime}(x)\right| \geq 1$. This is because f must always be above (or below) the line $y=x$ at all points. This violates the constraint, which shows that f has fixed points.
We want to show that $\left|f\left(x_{n}\right)-x_{n}\right|>\left|f\left(x_{n+1}\right)-x_{n+1}\right|$. Since $f(x)-x$ is a bounded and monotone sequence, it will converge. So now we show it. We want tho show that

$$
\left|f\left(x_{n}\right)-x_{n}\right|>\left|f\left(x_{n}\right)-f\left(f\left(x_{n}\right)\right)\right|
$$

Now, if this were not true, then we can use the mean value theorem on the points $\left(x_{n}, f\left(x_{n}\right)\right)$ and $\left(f\left(x_{n}\right), f\left(f\left(x_{n}\right)\right)\right.$. This would mean $f^{\prime}(x) \geq 1$ at some point between x_{n} and $f\left(x_{n}\right)$, violating the constraint. Therefore the statement is true.

5.4 Part D

It can be visualized by the zigzag path because $x_{n+1}=f\left(x_{n}\right)$, so just by drawing out each point $\left(x_{n}, f\left(x_{n}\right)\right)$ yields the desired zigzag path.

