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1 Q 1

Consider the textbook function

f(x) =

{
0 x ≤ 0

e−1/x x > 0

We know that this is infinitely differentiable at 0. We also know it approaches 0 when x → 0. Now
consider the function g(x) = 1 − f(1 − x). This function approaches 1 when x → 1 and is also
infinitely differentiable there. So how do we connect these two? Well what we do is that we scale
f(x) by 0.5/f(0.5). The good thing with this is that g(0.5) is also 0.5 now. This means they are
connected. And since f is infinitely differentiable, so is this new piecewise function. So our answer
is something like

h(x) =


0 x ≤ 0
0.5
e−2 e

−1/x 0 < x ≤ 0.5
0.5
e−2 (1− e−1/(1−x)) 0.5 < x < 1

1 x ≥ 1
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2 Q 2

We look at the primitive of
C0 + C1x+ C2x

2 + · · ·+ Cnx
n

This is

C0x+
C1

2
x2 +

C2

3
x3 + · · ·+ Cn

n+ 1
xn+1

Evaluating the primitive at x = 1, we find that it is equal to

C0 +
C1

2
+

C2

3
+ · · ·+ Cn

n+ 1

which is 0. Evaluating the primitive at x = 0, it is just 0. Since it is 0 everywhere, by the mean value
theorem there must be some point x ∈ [0, 1] in which the derivative of the function is 0. However,
the derivative is just the function we are looking at. This proves the statement.
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3 Q 3

We have that f(t)−f(x)
t−x is the slope of f between the points t and x, which means it is the value of

f ′(a) for some a ∈ (x, t) (or (t, x)). Thus, the expression can be replaced with

|f ′(a)− f ′(x)| < ϵ

where |a− x| < δ. Since f ′ is continuous over a compact set, it is uniformly continuous, so such a δ
exists.
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4 Q 4

We differentiate it n− 1 times. We get

f (n−1)(t) = tQ(n−1)(t) + (n− 1)Q(n−2)(t)− βQ(n−1)(t)

Plugging it in to the formula, we obtain

P (β) =

n−1∑
k=0

f (k)(α)

k!
(β − α)k

= f(α) +

n−1∑
k=1

(α− β)Q(k)(α) + kQ(k−1)(α))

k!
(β − α)k

= f(α) +

n−1∑
k=1

kQ(k−1)(α)

k!
(β − α)k −

n−1∑
k=1

Q(k)(α)

k!
(β − α)k+1

= f(α) +

n−2∑
k=0

Q(k)(α)

k!
(β − α)k+1 −

n−1∑
k=1

Q(k)(α)

k!
(β − α)k+1

= f(α)− Q(n−1)

(n− 1)!
(β − α)n

This shows that

f(α) = P (β) +
Q(n−1)

(n− 1)!
(β − α)n
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5 Q 5

5.1 Part A

Assume f has two fixed points. Then, take those two points and apply the mean value theorem.
This means that f ′(x) = 1 for some x between those two points, which violates the constraint.
Therefore, f has less than two fixed points.

5.2 Part B

If f has a fixed point, this means that

t = t+ (1 + et)−1

However, this means that
(1 + et)−1 = 0

which is impossible. Thus, f has no fixed points.

5.3 Part C

If there were no fixed points, then we would have |f ′(x)| ≥ 1. This is because f must always be
above (or below) the line y = x at all points. This violates the constraint, which shows that f has
fixed points.

We want to show that |f(xn)− xn| > |f(xn+1)− xn+1|. Since f(x)− x is a bounded and monotone
sequence, it will converge. So now we show it. We want tho show that

|f(xn)− xn| > |f(xn)− f(f(xn))|

Now, if this were not true, then we can use the mean value theorem on the points (xn, f(xn)) and
(f(xn), f(f(xn)). This would mean f ′(x) ≥ 1 at some point between xn and f(xn), violating the
constraint. Therefore the statement is true.

5.4 Part D

It can be visualized by the zigzag path because xn+1 = f(xn), so just by drawing out each point
(xn, f(xn)) yields the desired zigzag path.
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