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Ross 34.2

(a) By the fundamental theorem of calculus
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(b) By the same argument as before:
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Ross 34.5

Then consider for any z, [z + 1,z — 1] € (a,b) for some a,b € R. Then F(x) can be broken into
two integrals and because f is continuous, we can apply the fundamental theorem of calculus to

differentiate F'(z):
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Using integration by parts for zf(x) and f'(z) we get:
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Then using holder’s inequality:
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Then if equality were attained for the holder inequality, we would conclude zf(z) and f'(z) are
linearly dependent in L?[a, b] and therefore cx f(z) = f'(z) for ¢ € [a, b].
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Then using summation by parts (rudin theorem 3.41), in the form found on wikipedia:
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And the term ———— — 0 as N — oo, showing the desired inequality.
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(b) First, to show the integral converges for all s > 0, simply note that 0 <  — [z] < 1 and
therefore
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Second, to show the identity holds

And by part a), this is sufficient.
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And therefore if z < — we have a(x) < a(l/n) = 27" so for any € > 0 we can choose = < log,(¢)
n

and therefore a(r) < e. So « is continuous at z = 0.
Then because f(z) is continuous everywhere except = 0, f is integrable with respect to «. There
might be some other conditions, but I can’t find the theorem in Ross or Rudin.



