# Math 104 HW 2 

schel337

8/27/2020

## Ross 10.6

(a) For all $n, n+k \geq N$, then

$$
\begin{aligned}
\left|s_{n+k}-s_{n}\right| & \leq \sum_{i=0}^{k+1}\left|s_{n+i+1}-s_{n+i}\right| \\
& <\sum_{i=0}^{k+1} 2^{-n-i} \leq 2^{-N+1}
\end{aligned}
$$

Therefore for any $\varepsilon>0$, I can chose $N$ such that $2^{-N+1}<\varepsilon$ and therefore $m, n \geq N$ ensures $\left|s_{m}-s_{n}\right|<\varepsilon$
(b) No, because the harmonic sum $\frac{1}{n}$ grows unboundedly (albeit slowly). So if we let $s_{n+1}=$ $\frac{1}{n+1}+s_{n}$ be the harmonic sum, then for any $n>0$ we would an $m>n$ such that $s_{m}-s_{n}>M$ for any $M$.

## Ross 11.2

1. 

$$
\begin{aligned}
a_{n_{k}} & =a_{2 k}=1 \\
b_{n_{k}} & =b_{k} \\
c_{n_{k}} & =c_{k} \\
d_{n_{k}} & =d_{k+2}
\end{aligned}
$$

2. For $a_{n}$ it is $\{-1,1\}$. For $b_{n}$ it is 0 . For $c_{n}$ it is $\infty$. For $d_{n}$ it is 0 .
3. 

$$
\begin{aligned}
\limsup a_{n} & =1 \\
\lim \inf a_{n} & =-1 \\
\lim \inf b_{n} & =\limsup b_{n}=1 \\
\lim \inf c_{n} & =\limsup c_{n}=\infty \\
\limsup d_{n} & =\liminf d_{n}=0
\end{aligned}
$$

4. $b_{n}, d_{n}$ converge to $0 . c_{n}$ diverges to $+\infty$. $a_{n}$ does not converge or diverge (it oscillates)
5. All are bounded except $c_{n}$

## Ross 11.3

1. 

$$
\begin{aligned}
s_{n_{k}} & =s_{3 k}=\cos (\pi) \\
t_{n_{k}} & =t_{k} \\
u_{n_{k}} & =u_{2 k}=(-1 / 2)^{2 k}=(1 / 4)^{k} \\
v_{n_{k}} & =v_{2 k}=1+\frac{1}{n}
\end{aligned}
$$

2. For $s_{n}$ it is $\{\cos (0), \cos (\pi / 3), \cos (2 \pi / 3), \cos (\pi), \cos (4 \pi / 3), \cos (5 \pi / 3)\}$. For $t_{n}$ it is 0 . For $u_{n}$ it is 0 . For $v_{n}$ it is $\{-1,1\}$.
3. 

$$
\begin{aligned}
\lim \sup s_{n} & =\cos (0)=1 \\
\liminf s_{n} & =\cos (\pi)=-1 \\
\liminf t_{n} & =\lim \sup t_{n}=0 \\
\lim \inf u_{n} & =\lim \sup u_{n}=0 \\
\limsup v_{n} & =1 \\
\liminf v_{n} & =-1
\end{aligned}
$$

4. $t_{n}, u_{n}$ converge to $0 . s_{n}$ and $v_{b}$ do not converge or diverge (they oscillate)
5. All are bounded

## Ross 11.5

(a) It is $\{x \in \mathbb{R}: 0 \leq x \leq 1\}$
(b) $\lim \sup q_{n}=0, \lim \inf q_{n}=1$

## Limsup

A limsup is the largest upper bound on the infinite tail of the sequence. The supremum is taken over sets, where as the limsup is the limit as you ignore all of the leading terms of the sequence. One thing I find counter intuitive is that the limsup is approached by a monotone decreasing set of supremums, while I tend to think of supremums as increasing towards something as I expand a set. Another thing that sometimes confuses me is that is not linear for isntance $\lim \sup -a_{n} \neq-\lim \sup a_{n}$ for sequences such as $(-1)^{n}+1$.

