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Ross 12.10

If it is bounded |sn| ≤ M for M ∈ R then sup
n≥N

|sn| ≤ M for all N and therefore lim sup sn ≤ M < ∞.

Conversely suppose lim sup |sn| < ∞. Then for any ε > 0, there must exist N such that for all n > N
|sn| ≤ lim sup |sn| + ε. Then |sn| ≤ max( max

0≤n≤N
|sn|, lim sup |sn| + ε), as the finite beginning of the

sequence must be bounded and the tail must also be bounded due to the limsup condition.

12.12

(a) With n > M > N then we have:

σn =
1

n

n∑
i=1

si =

∑N
i=1 si
n

+

∑n
i=N+1 si

n

≤
∑N

i=1 si
M

+

∑n
i=N+1 si

n

≤
∑N

i=1 si
M

+
n−N

n
sup
n≥N

sup{sn : n > N}

≤
∑N

i=1 si
M

+ sup
n≥N

sup{sn : n > N}

As this is an upper bound it must hold for the supremum:

sup{σn : n ≥ M} ≤
∑N

i=1 si
M

+ sup{sn : n > N}

Then by taking the limit as M → ∞ (note that M > N so N can remain constant) and then
the limit as N → ∞

lim supσn ≤ sup{sn : n > N}
lim supσn ≤ lim sup sn

The middle inequality follows by definition and taking limits as inf{σn : n > N} ≤ sup{σn :
n > N}. The leftmost inequality follows by negating the lim sup inequality.

(b) Let sn = (−1)n. Then limσn = 0.
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14.2

(a)

n− 1

n2
≥ 1

n+ 2

n2 + n− 2 = (n− 1)(n+ 2) ≥ n2

n ≥ 2

an =

0 n = 1
1

n+ 2
n ≥ 2

Then an ≤ n− 1

n2
but

∑
an = ∞ as it is the harmonic sum (or at least it’s tail)

(b) It does not, the lim sup = 1 and lim inf = −1

(c) It does, it is 3
∑ 1

n2
which follows by linearity of limits.

(d) It will converge by the root test

lim sup

∣∣∣∣∣
(
n3

3n

)1/n
∣∣∣∣∣ = lim sup

∣∣∣∣n3/n

3

∣∣∣∣ = 1

3

(e) It will diverge by the ratio test

lim sup
(n+ 1)2

(n+ 1)!

n!

n2
= lim sup

1

n+ 1

n2 + 2n+ n

n2

= ∞ · 1 > 0

(f) For n > 2, then 0 <
1

nn
≤ 1

n2
so it converges.

(g) By the same argument as d it will converge.

Ross 14.10

Let

an+1 =


1

2
an n odd

3an n even

And treat a0 = 1. Then

lim a1/nn =
√

3/2 > 1

While lim inf an+1/an = 1/2 < 1 < lim sup an = 3.
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Rudin 3.6

(a)

√
n+ 1−

√
n ≥ 1

n

2n+ 1− 2
√

n2 + n ≥ 1

n2

2n3 + n2 − 2n2
√
n2 + n ≥ 1

Which numerically holds true for n ≥ 5 and therefore the series diverges. Oh, I just realized

the terms of the series cancel out so every partial sum is of the form

N∑
i=1

ai =
√
N + 1−1 → ∞

(b) The same cancelling argument holds but it gives partial sums of the form

√
N + 1

N
→ 0.

(c)

lim sup |a1/nn | = lim sup |n1/n − 1|
= 0

So it converges by the root test

(d) By the sanity test for convergence, I need |1 + zn| → ∞ so |z| > 1.

lim | 1 + zn

1 + zn+1
| = lim |1 + z−n

z + z−n
|

=
1

|z|
So the series converges absolutely for |z| > 1 and diverges for |z| < 1. For |z| = 1, the series
will diverge as the terms cannot change in sign because the denominator will always have a
non-negative real part.

Rudin 3.7

By an arcane inequality: (
√
an − 1

n

)2

≥ 0

an − 2

√
an
n

+
1

n2
≥ 0

1

2

(
an +

1

n2

)
≥ an ≥ 0

Therefore the series converges.

Rudin 3.9

1.

lim | (n+ 1)3zn+1

nzn
| = lim |z| < 1

If |z| = 1, then the n3 term will prevent convergence as |an| = |n3||z|n. So the radius is |z| < 1

3



2.

lim

∣∣∣∣ 2n+1zn+1n!

(n+ 1)!2nzn

∣∣∣∣ = lim

∣∣∣∣ 2z

n+ 1

∣∣∣∣ = 0

So it will always converge.

3.

lim

∣∣∣∣ 2n+1zn+1n2

2nzn(n+ 1)2

∣∣∣∣ = |2z|

So it will converge for |z| < 1

2
. If |z| = 1/2 then we get |an| =

1

n2
so it will absolutely converge.

So the radius is |z| ≤ 1/2

4.

lim

∣∣∣∣ (n+ 1)3zn+13n

n3zn3n+1

∣∣∣∣ = lim
∣∣∣z
3

∣∣∣
So |z| ≤ 1

3
is a sufficient condition for convergence. When |z| = 1/3 then we end up with

|an| = n3 so the series will diverge.

Ross 3.11

(a) By another arcane inequality:

ai
1 + ai

> ai + f

ai > ai + a2i + f + fai

−f(1 + ai) > a2i

ai/2 + a2i /2 > a2i

ai > ai/2 + a2i /2

ai/2 > a2i /2

Then min(ai/2, 1) ≤
ai

1 + au
. Then if

∑
ai = ∞, then I claim

∑
min(ai/2, 1) = ∞ as well.

If infinitely many terms ai > 1 then clearly
∑

min(ai/2, 1) = ∞ anyways as infinitely many

1’s will still cause divergence. If only finitely many ai > 1, then summing over a subsequence

of terms aik < 1 will diverge as well and therefore so will
∑

min(ai/2, 1)

(b)

aN+1

sN+1
+ · · ·+ aN+k

sN+k
≥ aN+1 + · · ·+ aN+k

sN+k

≥ sN+k − sN
sN+k

≥ 1− sN
sN+k
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Therefore the tails are sufficiently heavy to diverge. For any N you can constuct a tail tail by
choosing finite N + k such that sN+k ≥ 2sN (which exists because the series diverges):

N+k∑
i=N

ai
si

≥ 1

2

Then you can repeat the process with N + k + 1 as the new starting point for constructing
another heavy tail with sum ≥ 1/2.

(c)

1

sn−1
− 1

sn
=

sn − sn−1

snsn−1

=
an

snsn−1

≥ an
s2n

I have no intuition on this one. Oh, it says converges. That makes things much easier.

03n→∞ a1s
2
i+

1
s1

<∞
∑n

i=1
ai
sn
i
≤
∑n

i=1
1

si−1
− 1

si
=

a1
s2
i

+ 1
s1

− 1
sn

03n→∞ a1s
2
i+

1
s1

<∞

So series converges by comparison

(d) That will depend on the series. For instance with an = 1 then
∑ 1

1 + n
= ∞ and with

an =
1

nk
then

∑ 1

nk(1 + n
nk )

=
∑ 1

nk + n
which will converge for k > 1.

For the second summation it will always converge as
an

1 + n2an
=

1
1
an

+ n2
. If you allowed

an < 0 then you could get it to not converge with something like an = − 1

2n2
, but as an > 0

then
an

1 + n2an
≤ 1

n2
so the series converges by comparison.
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