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Ross 12.10

If it is bounded |s,,| < M for M € R then sup |s,| < M for all N and therefore limsup s,, < M < co.
n>N

Conversely suppose limsup |s,| < co. Then for any € > 0, there must exist N such that for alln > N
|sn| < limsup|sy,| +¢e. Then |s,| < max(ogla<xN |sn|, limsup |s,| + €), as the finite beginning of the
n

sequence must be bounded and the tail must also be bounded due to the limsup condition.

12.12

(a) With n > M > N then we have:
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As this is an upper bound it must hold for the supremum:

N
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sup{o, :n> M} < +sup{s, :n> N}

Then by taking the limit as M — oo (note that M > N so N can remain constant) and then
the limit as N — oo

limsup o, < sup{s, :n > N}

limsup o, < limsup s,

The middle inequality follows by definition and taking limits as inf{o,, : n > N} < sup{o,, :
n > N}. The leftmost inequality follows by negating the lim sup inequality.

(b) Let s, = (—1)". Then limo,, = 0.
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Then a, < nT but E an = oo as it is the harmonic sum (or at least it’s tail)
n
It does not, the limsup = 1 and liminf = —1
It does, it is 3 g — which follows by linearity of limits.
n

It will converge by the root test
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(e) It will diverge by the ratio test
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(f) For n > 2, then 0 < — < — so it converges.
n" n
(g) By the same argument as d it will converge.
Ross 14.10
Let
1
—a, n odd

Ap+4+1 =
3a, n even

And treat ag = 1. Then

limal/™ = \/3/2> 1

While liminf a,41/a, =1/2 <1 < limsupa,, = 3.



Rudin 3.6

Vn+1—+v/n>
2n+1—-2vn?2+4+n>
m3+n?—2n2/n2+n>1

Which numerically holds true for n > 5 and therefore the series diverges. Oh, I just realized
N

the terms of the series cancel out so every partial sum is of the form Z a;=vVN+1-1— 0
i=1

VN +1

The same cancelling argument holds but it gives partial sums of the form N — 0.

limsup |a/"| = limsup [n*/™ — 1|
=0
So it converges by the root test

By the sanity test for convergence, I need |1 + 2"| — o0 so |z| > 1.
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So the series converges absolutely for |z| > 1 and diverges for |z| < 1. For |z| = 1, the series
will diverge as the terms cannot change in sign because the denominator will always have a
non-negative real part.

Rudin 3.7

By an arcane inequality:

Therefore the series converges.

Rudin 3.9

1.
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If |2| = 1, then the n® term will prevent convergence as |a,,| = [n*||z|™. So the radius is |z| < 1
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So it will always converge.
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So it will converge for |z| < . If |z| = 1/2 then we get |a,| = — so it will absolutely converge.
n
So the radius is |z| < 1/2
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So |z] < zsa sufficient condition for convergence. When |z| = 1/3 then we end up with
lan| = n® so the series will diverge.
Ross 3.11
(a) By another arcane inequality:
a;
> ag
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ai > a; +a?+ f+ fa;
—f(1 +a;) > a?
ai2+al/2 > a?
ai > a;/2+a? /2
ai/2 > a3 /2

a;

Then min(a;/2,1) < Then if Zai = 00, then I claim Zmin(ai/Q, 1) = oo as well.

14+a,
If infinitely many terms a; > 1 then clearly Zmin(ai /2,1) = oo anyways as infinitely many
1’s will still cause divergence. If only finitely many a; > 1, then summing over a subsequence
of terms a;, < 1 will diverge as well and therefore so will Z min(a;/2,1)
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Therefore the tails are sufficiently heavy to diverge. For any N you can constuct a tail tail by
choosing finite N + k such that syix > 2sy (which exists because the series diverges):
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Then you can repeat the process with N + k + 1 as the new starting point for constructing
another heavy tail with sum > 1/2.
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I have no intuition on this one. Oh, it says converges. That makes things much easier.
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So series converges by comparison
1
1+n

1 1 1
an = % then Z m = Z i which will converge for k > 1.

= oo and with

That will depend on the series. For instance with a,, = 1 then Z

a
For the second summation it will always converge as "2 = = . If you allowed
1+ n2a, o+ n?
1
an < 0 then you could get it to not converge with something like a,, = 52 but as a, >0
n
a . .
then — so the series converges by comparison.
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