Math 104 HW 4

schel337
8/27/2020

Ross 12.10

If it is bounded $\left|s_{n}\right| \leq M$ for $M \in \mathbb{R}$ then $\sup _{n \geq N}\left|s_{n}\right| \leq M$ for all N and therefore $\lim \sup s_{n} \leq M<\infty$. Conversely suppose $\limsup \left|s_{n}\right|<\infty$. Then for any $\varepsilon>0$, there must exist N such that for all $n>N$ $\left|s_{n}\right| \leq \lim \sup \left|s_{n}\right|+\varepsilon$. Then $\left|s_{n}\right| \leq \max \left(\max _{0 \leq n \leq N}\left|s_{n}\right|\right.$, limsup $\left.\left|s_{n}\right|+\varepsilon\right)$, as the finite beginning of the sequence must be bounded and the tail must also be bounded due to the limsup condition.

12.12

(a) With $n>M>N$ then we have:

$$
\begin{aligned}
\sigma_{n}=\frac{1}{n} \sum_{i=1}^{n} s_{i} & =\frac{\sum_{i=1}^{N} s_{i}}{n}+\frac{\sum_{i=N+1}^{n} s_{i}}{n} \\
& \leq \frac{\sum_{i=1}^{N} s_{i}}{M}+\frac{\sum_{i=N+1}^{n} s_{i}}{n} \\
& \leq \frac{\sum_{i=1}^{N} s_{i}}{M}+\frac{n-N}{n} \sup _{n \geq N} \sup \left\{s_{n}: n>N\right\} \\
& \leq \frac{\sum_{i=1}^{N} s_{i}}{M}+\sup _{n \geq N} \sup \left\{s_{n}: n>N\right\}
\end{aligned}
$$

As this is an upper bound it must hold for the supremum:

$$
\sup \left\{\sigma_{n}: n \geq M\right\} \leq \frac{\sum_{i=1}^{N} s_{i}}{M}+\sup \left\{s_{n}: n>N\right\}
$$

Then by taking the limit as $M \rightarrow \infty$ (note that $M>N$ so N can remain constant) and then the limit as $N \rightarrow \infty$

$$
\begin{aligned}
& \limsup \sigma_{n} \leq \sup \left\{s_{n}: n>N\right\} \\
& \limsup \sigma_{n} \leq \lim \sup s_{n}
\end{aligned}
$$

The middle inequality follows by definition and taking limits as $\inf \left\{\sigma_{n}: n>N\right\} \leq \sup \left\{\sigma_{n}\right.$: $n>N\}$. The leftmost inequality follows by negating the limsup inequality.
(b) Let $s_{n}=(-1)^{n}$. Then $\lim \sigma_{n}=0$.

14.2

(a)

$$
\begin{aligned}
\frac{n-1}{n^{2}} & \geq \frac{1}{n+2} \\
n^{2}+n-2=(n-1)(n+2) & \geq n^{2} \\
n & \geq 2 \\
a_{n} & = \begin{cases}0 & n=1 \\
\frac{1}{n+2} & n \geq 2\end{cases}
\end{aligned}
$$

Then $a_{n} \leq \frac{n-1}{n^{2}}$ but $\sum a_{n}=\infty$ as it is the harmonic sum (or at least it's tail)
(b) It does not, the $\limsup =1$ and $\lim \inf =-1$
(c) It does, it is $3 \sum \frac{1}{n^{2}}$ which follows by linearity of limits.
(d) It will converge by the root test

$$
\lim \sup \left|\left(\frac{n^{3}}{3^{n}}\right)^{1 / n}\right|=\lim \sup \left|\frac{n^{3 / n}}{3}\right|=\frac{1}{3}
$$

(e) It will diverge by the ratio test

$$
\begin{aligned}
\limsup \frac{(n+1)^{2}}{(n+1)!} \frac{n!}{n^{2}} & =\lim \sup \frac{1}{n+1} \frac{n^{2}+2 n+n}{n^{2}} \\
& =\infty \cdot 1>0
\end{aligned}
$$

(f) For $n>2$, then $0<\frac{1}{n^{n}} \leq \frac{1}{n^{2}}$ so it converges.
(g) By the same argument as d it will converge.

Ross 14.10

Let

$$
a_{n+1}= \begin{cases}\frac{1}{2} a_{n} & n \text { odd } \\ 3 a_{n} & n \text { even }\end{cases}
$$

And treat $a_{0}=1$. Then

$$
\lim a_{n}^{1 / n}=\sqrt{3 / 2}>1
$$

While $\liminf a_{n+1} / a_{n}=1 / 2<1<\limsup a_{n}=3$.

Rudin 3.6

(a)

$$
\begin{aligned}
\sqrt{n+1}-\sqrt{n} & \geq \frac{1}{n} \\
2 n+1-2 \sqrt{n^{2}+n} & \geq \frac{1}{n^{2}} \\
2 n^{3}+n^{2}-2 n^{2} \sqrt{n^{2}+n} & \geq 1
\end{aligned}
$$

Which numerically holds true for $n \geq 5$ and therefore the series diverges. Oh, I just realized the terms of the series cancel out so every partial sum is of the form $\sum_{i=1}^{N} a_{i}=\sqrt{N+1}-1 \rightarrow \infty$
(b) The same cancelling argument holds but it gives partial sums of the form $\frac{\sqrt{N+1}}{N} \rightarrow 0$.
(c)

$$
\begin{aligned}
\limsup \left|a_{n}^{1 / n}\right| & =\limsup \left|n^{1 / n}-1\right| \\
& =0
\end{aligned}
$$

So it converges by the root test
(d) By the sanity test for convergence, I need $\left|1+z^{n}\right| \rightarrow \infty$ so $|z|>1$.

$$
\begin{aligned}
\lim \left|\frac{1+z^{n}}{1+z^{n+1}}\right| & =\lim \left|\frac{1+z^{-n}}{z+z^{-n}}\right| \\
& =\frac{1}{|z|}
\end{aligned}
$$

So the series converges absolutely for $|z|>1$ and diverges for $|z|<1$. For $|z|=1$, the series will diverge as the terms cannot change in sign because the denominator will always have a non-negative real part.

Rudin 3.7

By an arcane inequality:

$$
\begin{aligned}
\left(\sqrt{a_{n}}-\frac{1}{n}\right)^{2} & \geq 0 \\
a_{n}-2 \frac{\sqrt{a_{n}}}{n}+\frac{1}{n^{2}} & \geq 0 \\
\frac{1}{2}\left(a_{n}+\frac{1}{n^{2}}\right) & \geq a_{n} \geq 0
\end{aligned}
$$

Therefore the series converges.

Rudin 3.9

1.

$$
\lim \left|\frac{(n+1)^{3} z^{n+1}}{n z^{n}}\right|=\lim |z|<1
$$

If $|z|=1$, then the n^{3} term will prevent convergence as $\left|a_{n}\right|=\left|n^{3}\right||z|^{n}$. So the radius is $|z|<1$
2.

$$
\lim \left|\frac{2^{n+1} z^{n+1} n!}{(n+1)!2^{n} z^{n}}\right|=\lim \left|\frac{2 z}{n+1}\right|=0
$$

So it will always converge.
3.

$$
\lim \left|\frac{2^{n+1} z^{n+1} n^{2}}{2^{n} z^{n}(n+1)^{2}}\right|=|2 z|
$$

So it will converge for $|z|<\frac{1}{2}$. If $|z|=1 / 2$ then we get $\left|a_{n}\right|=\frac{1}{n^{2}}$ so it will absolutely converge. So the radius is $|z| \leq 1 / 2$
4.

$$
\lim \left|\frac{(n+1)^{3} z^{n+1} 3^{n}}{n^{3} z^{n} 3^{n+1}}\right|=\lim \left|\frac{z}{3}\right|
$$

So $|z| \leq \frac{1}{3}$ is a sufficient condition for convergence. When $|z|=1 / 3$ then we end up with $\left|a_{n}\right|=n^{3}$ so the series will diverge.

Ross 3.11

(a) By another arcane inequality:

$$
\begin{aligned}
\frac{a_{i}}{1+a_{i}} & >a_{i}+f \\
a_{i} & >a_{i}+a_{i}^{2}+f+f a_{i} \\
-f\left(1+a_{i}\right) & >a_{i}^{2} \\
a_{i} / 2+a_{i}^{2} / 2 & >a_{i}^{2} \\
a_{i} & >a_{i} / 2+a_{i}^{2} / 2 \\
a_{i} / 2 & >a_{i}^{2} / 2
\end{aligned}
$$

Then $\min \left(a_{i} / 2,1\right) \leq \frac{a_{i}}{1+a_{u}}$. Then if $\sum a_{i}=\infty$, then I claim $\sum \min \left(a_{i} / 2,1\right)=\infty$ as well. If infinitely many terms $a_{i}>1$ then clearly $\sum \min \left(a_{i} / 2,1\right)=\infty$ anyways as infinitely many 1's will still cause divergence. If only finitely many $a_{i}>1$, then summing over a subsequence of terms $a_{i_{k}}<1$ will diverge as well and therefore so will $\sum \min \left(a_{i} / 2,1\right)$
(b)

$$
\begin{aligned}
\frac{a_{N+1}}{s_{N+1}}+\cdots+\frac{a_{N+k}}{s_{N+k}} & \geq \frac{a_{N+1}+\cdots+a_{N+k}}{s_{N+k}} \\
& \geq \frac{s_{N+k}-s_{N}}{s_{N+k}} \\
& \geq 1-\frac{s_{N}}{s_{N+k}}
\end{aligned}
$$

Therefore the tails are sufficiently heavy to diverge. For any N you can constuct a tail tail by choosing finite $N+k$ such that $s_{N+k} \geq 2 s_{N}$ (which exists because the series diverges):

$$
\sum_{i=N}^{N+k} \frac{a_{i}}{s_{i}} \geq \frac{1}{2}
$$

Then you can repeat the process with $N+k+1$ as the new starting point for constructing another heavy tail with sum $\geq 1 / 2$.
(c)

$$
\begin{aligned}
\frac{1}{s_{n-1}}-\frac{1}{s_{n}} & =\frac{s_{n}-s_{n-1}}{s_{n} s_{n-1}} \\
& =\frac{a_{n}}{s_{n} s_{n-1}} \\
& \geq \frac{a_{n}}{s_{n}^{2}}
\end{aligned}
$$

I have no intuition on this one. Oh, it says converges. That makes things much easier.

$$
03_{n \rightarrow \infty} a_{1} s_{i}^{2}+\frac{1}{s_{1}}<\infty \sum_{i=1}^{n} \frac{a_{i}}{s_{i}^{n}} \leq \sum_{i=1}^{n} \frac{1}{s_{i-1}}-\frac{1}{s_{i}}=\frac{a_{1}}{s_{i}^{2}}+\frac{1}{s_{1}}-\frac{1}{s_{n}}
$$

$03_{n \rightarrow \infty} a_{1} s_{i}^{2}+\frac{1}{s_{1}}<\infty$

So series converges by comparison
(d) That will depend on the series. For instance with $a_{n}=1$ then $\sum \frac{1}{1+n}=\infty$ and with $a_{n}=\frac{1}{n^{k}}$ then $\sum \frac{1}{n^{k}\left(1+\frac{n}{n^{k}}\right)}=\sum \frac{1}{n^{k}+n}$ which will converge for $k>1$.
For the second summation it will always converge as $\frac{a_{n}}{1+n^{2} a_{n}}=\frac{1}{\frac{1}{a_{n}}+n^{2}}$. If you allowed $a_{n}<0$ then you could get it to not converge with something like $a_{n}=-\frac{1}{2 n^{2}}$, but as $a_{n}>0$ then $\frac{a_{n}}{1+n^{2} a_{n}} \leq \frac{1}{n^{2}}$ so the series converges by comparison.

