Math 104 HW 5

schel337
8/27/2020

Ross 13.3

(a)

$$
\sup _{j \geq 1}\left|x_{j}-y_{j}\right|=0 \Longrightarrow x_{j}=y_{j} \quad \forall j
$$

Conversely if $x_{k} \neq y_{k}$ for some k then $\sup _{j \geq 1}\left|x_{j}-y_{j}\right| \geq\left|x_{k}-y_{k}\right|>0$. It is symmetric as $\left|x_{j}-y_{j}\right|=\left|y_{j}-x_{j}\right|$. The triangle inequality is inherited from that of $|\cdot|$:

$$
\begin{gathered}
\left|x_{i}-z_{i}\right|=\left|x_{i}-y_{i}+y_{i}-z_{i}\right| \leq\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right| \\
\sup _{i \geq 1}\left|x_{i}-z_{i}\right| \leq \sup _{i \geq 1}\left(\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|\right) \leq \sup _{i \geq 1}\left|x_{i}-y_{i}\right|+\sup _{i \geq 1}\left|y_{i}-z_{i}\right|
\end{gathered}
$$

The assumption of bounded sequences ensures the supremum exists.
(b) There can be issues where $\sum_{j \geq 1}\left|x_{j}-y_{j}\right|$ is divergent, but if we include ∞ as a valid value then it should work.

$$
\sum_{j \geq 1}\left|x_{j}-y_{j}\right|=0 \Longrightarrow x_{j}=y_{j} \quad \forall j
$$

Conversely if $x_{k} \neq y_{k}$ for some k then $\sum_{j \geq 1}\left|x_{j}-y_{j}\right| \geq\left|x_{k}-y_{k}\right|>0$. It is symmetric as $\left|x_{j}-y_{j}\right|=\left|y_{j}-x_{j}\right|$ and therefore all partial sums are equal. The triangle inequality is inherited from that of $|\cdot|$:

$$
\begin{aligned}
\mid x_{i} & -z_{i}\left|=\left|x_{i}-y_{i}+y_{i}-z_{i}\right| \leq\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|\right. \\
\sum_{i \geq 1}\left|x_{i}-z_{i}\right| & \leq \sum_{i \geq 1}\left(\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|\right) \leq \sum_{i \geq 1}\left|x_{i}-y_{i}\right|+\sum_{i \geq 1}\left|y_{i}-z_{i}\right|
\end{aligned}
$$

This works for the infinite series, as the inequality holds for every partial sum. There is an issue where you could have $\infty<\infty$ though.

13.5

(a) Let $x \in \bigcap_{U \in \mathcal{U}} S \backslash U$. Then note that $S \backslash U=S \cap U^{C}$.

$$
\begin{aligned}
& x \in S \backslash U \quad \forall U \in \mathcal{U} \\
\Longrightarrow & x \in S \\
\Longrightarrow & x \in U^{C} \quad \forall U \in \mathcal{U} \\
\Longrightarrow & x \in S \cap \bigcap_{U \in \mathcal{U}} U^{C}=S \backslash \bigcup_{U \in \mathcal{U}} U
\end{aligned}
$$

Conversely let $x \in S \backslash \bigcup_{U \in \mathcal{U}} U=S \cap \bigcap_{U \in \mathcal{U}} U^{C}$. Then

$$
x \in S
$$

$$
x \in U^{C} \quad \forall U \in \mathcal{U}
$$

$$
x \in S \cap U^{C} \quad \forall U \in \mathcal{U}
$$

$$
\Longrightarrow x \in \bigcap_{U \in \mathcal{U}} S \backslash U
$$

(b) To apply the just shown de-morgan's law consider each closed set: $R=S \backslash U^{C}$. Then for any \mathcal{R} collection of closed sets we can define $\mathcal{U}=\left\{R^{C}: R \in \mathcal{R}\right\}$. Then $\bigcap_{R \in \mathcal{R}} R=\bigcap_{U \in \mathcal{U}} S \backslash U=S \backslash \bigcup_{U \in \mathcal{U}} U$.
Then $\bigcup_{U \in \mathcal{U}} U$ is an open set as the union of open sets and therefore it's complement $\bigcap_{R \in \mathcal{R}} R$ is closed.

13.7

Let $U \subseteq R$ be an open set. Then for any $u \in U$ there is a corresponding $r_{u}>0$ such that $\left(u-r_{u}, u+r_{u}\right) \subseteq U$. Then $\hat{U}=\bigcup_{u \in U}\left(u-r_{u}, u+r_{u}\right)$ is an open set and I claim it is equal to U. Clearly $U \subseteq \hat{U}$, so let $\hat{u} \in \hat{U}$. Then for some $u \in U$ and $r_{u}>0, \hat{u} \in\left(u-r_{u}, u+r_{u}\right) \subseteq U$. So $\hat{U}=U$.

Repeated Closure

First, note that $S \subseteq \bar{S}=S_{1}$ as for any $p \in S$, the constant sequence $p_{n}=p \rightarrow p$. Then let $S_{2}=\bar{S}_{1}$ and suppose $x \in S_{2} \backslash S_{1}$. Then for some $\varepsilon>0, d(s, x)>\varepsilon$ for all $s \in S$. Otherwise there would be a convergent sequence $s_{n} \in S$ where $s_{n} \rightarrow x$.
But there must be a sequence $\bar{s}_{n} \in S_{1}$ where $\bar{s}_{n} \rightarrow x$, and then for some $N d\left(\bar{s}_{N}, x\right)<\varepsilon / 2$. And as $\bar{s}_{N} \in S_{1}$ there must be a sequence $s_{n} \rightarrow \bar{s}_{N}$ and some M such that $d\left(\bar{s}_{N}, s_{M}\right)<\varepsilon / 2$. Then by the triangle inequality $d\left(x, s_{M}\right) \leq d\left(\bar{s}_{N}, s_{M}\right)+d\left(\bar{s}_{N}, s_{M}\right)<\varepsilon$, contradicting our assumption $x \notin S_{1}$.

Intersection of all containing closed sets

Let $\mathcal{R}=\{R \subseteq X: R$ closed, $S \subseteq R\}$ be the set of all closed sets containing $S \subseteq X$. Then note that $S \subseteq \bar{S}$ as before so $\bar{S} \in \mathcal{R}$ and therefore $\bigcap_{R \in \mathcal{R}} R \subseteq \bar{S}$.

Conversely let $x \in \bar{S}$ and $R \in \mathcal{R}$ be any closed set containing S. Then there exists $p_{n} \in S \subseteq R$ such that $p_{n} \rightarrow x$. Then $p_{n} \in R$ and $p_{n} \rightarrow x$, and as R is closed, $x \in R$. Therefore $\bar{S} \subseteq \bigcap_{R \in \mathcal{R}} \bar{R}$, as the argument holds for any R

