Math 104 HW 8

schel337

8/27/2020

Question 1

For any $\varepsilon > 0$

$$f_n(x) - (1/2) = \frac{n + \sin x}{2n + \cos(n^2 x)} - \frac{1}{2}$$

= $\frac{2n + 2\sin x}{2(2n + \cos(n^2 x))} - \frac{2n + \cos(n^2 x)}{2(2n + \cos(n^2 x))}$
= $\frac{2\sin x - \cos(n^2 x)}{2(2n + \cos(n^2 x))}$
 $|f_n(x) - (1/2)| \le \frac{|2| + |1|}{4|n| + 2}$

So for sufficiently large n, $|f_n(x) - 1/2| \le \varepsilon$ for all x.

Question 2

Let $f_N(x) = \sum_{n=1}^N a_n x^n$. Then for any $\varepsilon > 0$, I claim the cauchy condition for uniform convergence holds.

$$|f_n(x) - f_{m-1}(x)| = |a_m x^m + \dots + a_n x^n|$$

 $\leq |a_m + \dots + a_n|$

And the summation of $|a_m + \cdots + a_n| < \varepsilon$ for sufficiently large m, n because $\sum |a_n| < \infty$ and therefore the cauchy condition for the tail sum holds. Therefore f(x) is continuous as the uniform limit of $f_N(x)$, which are a family of continuous function. Then because $\sum_{n=1}^{\infty} |n^{-2}| < \infty$, so the given function is continious.

Question 3

For any 0 < a < 1, then for $x \in [-a, a]$ I have $|x^n| \leq a^n$ and so by the weierstrass M-test, $f(x) = \sum_n x^n$ converges uniformly on E so it is continuous on [-a, a]. Then for any $x \in (-1, 1)$, there exists $[-a, a] \ni x$ so f is continuous at x. The convergence to is not uniform. Note that this series is a geometric one so $\sum_n x^n \to \frac{1}{1-x}$. Let $\varepsilon > 0$ and then

$$\frac{1}{1-x} - \sum_{i=0}^{n} x^{i} = \frac{1}{1-x} - \frac{1-x^{n+1}}{1-x}$$
$$= \frac{x^{n+1}}{1-x}$$

And as $x \to \pm 1$, we have that $\left|\frac{x^{n+1}}{1-x}\right| \to \infty$ for any n and therefore there must exist x sufficiently close to ± 1 and y = 0 such that $|f_n(x) - f(x)| > \varepsilon$.