Math 104 HW 2

schel337

8/27/2020

9.9

- (a) For any number M there exists k such that $s_n > M$ for $n \ge k$ then $t_n \ge s_n > M$ for all $n \ge k$.
- (b) By a symmetric argument to the above.
- (c) Note that $t_n s_n \ge 0$ and therefore. Then suppose $\lim(t_n s_n) < 0$. But then for some N there must exist $\lim(t_n s_n) \le t_N s_N \le \frac{\lim(t_n s_n)}{2} < 0$, which is impossible. Therefore $\lim t_n \lim s_n = \lim(t_n s_n) \ge 0$ as desired.

9.15

Note that for $n \ge a + 1$ I have

$$\frac{a^n}{n!} \le \frac{a^a}{a!} \left(\frac{a}{a+1}\right)^{n-a}$$

As all of the terms after $\frac{a}{\lceil a+1\rceil} < 1$ will continue decreasing and the geometric series will go to 0.

10.7

You can construct such a sequence by taking points increasingly near the supremum. Let $\varepsilon_1 = 1$ for instance and then consider whether there is a point in S that is within ε_1 of $\sup S$, which would be greater than $\sup S - \varepsilon_1$. If all points in S were more than ε_1 from $\sup S$ then $\sup S - \varepsilon_1$ would be a smaller upper bound on S, a contradiction. Therefore let $s_1 \in S$ be a point satisfying $\sup S - \varepsilon_1 < s_1 \leq \sup S$. Then let s_{n+1} be recursively defined by being a point with $\varepsilon_{n+1} = (S - s_n)/2$ which gives a monotone increasing sequence which decays at least exponentially fast to $\sup S$.

10.8

This is quite intuitive, as the average of an increasing seequence will also be increasing.

$$\frac{\sum_{i=1}^{n} s_i}{n} = \frac{n(\sum_{i=1}^{n} s_i) + \sum_{i=1}^{n} s_i}{n(n+1)}$$
$$= \frac{\sum_{i=1}^{n} s_i + \frac{\sum_{i=1}^{n} s_i}{n}}{n+1}$$
$$< \frac{\sum_{i=1}^{n} s_i + s_{n+1}}{n+1}$$

Where I use that

$$\sum_{i=1}^{n} s_i < \sum_{i=1}^{n} s_{n+1} = n s_{n+1}$$

10.9

(a)

$$s_2 = \frac{2}{3}$$

$$s_3 = \frac{3}{4} \frac{4}{9}$$

$$s_4 = \frac{4}{5} \left(\frac{3}{4}\right)^2 \left(\frac{2}{3}\right)^4$$

- (b) This is a positive sequence of monotonically decreasing numbers as multiplying by a number <1 reduces it. Therefore it has a limit.
- (c) This is upper bounded by $(2/3)^n$ and therefore it decreases to 0.

10.10

(a)

$$s_2 = \frac{2}{3}$$
$$s_3 = \frac{5}{9}$$
$$s_4 = \frac{14}{27}$$

(b) The base cases were shown above.

$$\frac{s_n > 1/2}{\frac{s_n + 1}{3} > \frac{3}{2}\frac{1}{3} = \frac{1}{2}}$$

(c)

$$\frac{\frac{1}{2} < s_n}{\frac{1}{3} < \frac{2}{3}s_n}$$
$$\frac{1}{3} + \frac{1}{3}s_n < s_n$$

(d) Existence follows by the sequence being monotone and therefore by taking the limit of both sides of the recursion and letting

$$\lim s_n = \frac{1}{3} \lim s_n + \frac{1}{3}$$
$$\lim s_n = \frac{1}{2}$$

10.11

- (a) It exists because it's a monotone decreasing seequence.
- (b) I'm guessing some weird number like $\pi/6$, as I don't think it decays fast enough to reach 0

Squeeze Test

Let $\varepsilon > 0$. Then for some N, M, $|c_n - L|, |a_m - L| \le \varepsilon$ for all $n \ge N$ and $m \ge M$. Therefore $|b_n - L| \le \varepsilon$ for all $n \ge \max(N, M)$.