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9.9
(a) For any number M there exists k such that s,, > M for n > k then t,, > s,, > M for all n > k.
(b) By a symmetric argument to the above.
(¢) Note that ¢, — s, > 0 and therefore. Then suppose lim(¢, — s,,) < 0. But then for some N

lim(t, — s,)

there must exist lim(t, — s,) <ty — sy < < 0, which is impossible. Therefore

limt, —lims, = lim(¢, — s,) > 0 as desired.

9.15

Note that for n > a + 1 I have
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As all of the terms after — < 1 will continue decreasing and the geometric series will go to 0.
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10.7

You can construct such a sequence by taking points increasingly near the supremum. Let ¢ =1
for instance and then consider whether there is a point in S that is within €; of sup .S, which
would be greater than sup S — ;. If all points in S were more than €7 from sup S then sup S — &3
would be a smaller upper bound on S, a contradiction. Therefore let s; € S be a point satisfying
sup S—e1 < s1 < supS. Then let s,,41 be recursively defined by being a point with e,,11 = (S—s,,)/2
which gives a monotone increasing sequence which decays at least exponentially fast to sup S.

10.8
This is quite intuitive, as the average of an increasing seequence will also be increasing.
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Where I use that
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b) This is a positive sequence of monotonically decreasing numbers as multlplyln by a number
g g
< 1 reduces it. Therefore it has a limit.

(¢) This is upper bounded by (2/3)™ and therefore it decreases to 0.
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(b) The base cases were shown above.
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(d) Existence follows by the sequence being monotone and therefore by taking the limit of both
sides of the recursion and letting
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10.11

(a) It exists because it’s a monotone decreasing seequence.

(b) 'm guessing some weird number like 7/6, as T don’t think it decays fast enough to reach 0

Squeeze Test

Let € > 0. Then for some N, M, |¢, — L|,|am — L| < € for all n > N and m > M. Therefore
|b, — L| < e for all n > max(N, M).



