Math 104 HW 2

schel337
8/27/2020

9.9

(a) For any number M there exists k such that $s_{n}>M$ for $n \geq k$ then $t_{n} \geq s_{n}>M$ for all $n \geq k$.
(b) By a symmetric argument to the above.
(c) Note that $t_{n}-s_{n} \geq 0$ and therefore. Then suppose $\lim \left(t_{n}-s_{n}\right)<0$. But then for some N there must exist $\lim \left(t_{n}-s_{n}\right) \leq t_{N}-s_{N} \leq \frac{\lim \left(t_{n}-s_{n}\right)}{2}<0$, which is impossible. Therefore $\lim t_{n}-\lim s_{n}=\lim \left(t_{n}-s_{n}\right) \geq 0$ as desired.

9.15

Note that for $n \geq a+1$ I have

$$
\frac{a^{n}}{n!} \leq \frac{a^{a}}{a!}\left(\frac{a}{a+1}\right)^{n-a}
$$

As all of the terms after $\frac{a}{\lceil a+1\rceil}<1$ will continue decreasing and the geometric series will go to 0 .

10.7

You can construct such a sequence by taking points increasingly near the supremum. Let $\varepsilon_{1}=1$ for instance and then consider whether there is a point in S that is within ε_{1} of $\sup S$, which would be greater than $\sup S-\varepsilon_{1}$. If all points in S were more than ε_{1} from $\sup S$ then $\sup S-\varepsilon_{1}$ would be a smaller upper bound on S, a contradiction. Therefore let $s_{1} \in S$ be a point satisfying $\sup S-\varepsilon_{1}<s_{1} \leq \sup S$. Then let s_{n+1} be recursively defined by being a point with $\varepsilon_{n+1}=\left(S-s_{n}\right) / 2$ which gives a monotone increasing sequence which decays at least exponentially fast to $\sup S$.

10.8

This is quite intuitive, as the average of an increasing seequence will also be increasing.

$$
\begin{aligned}
\frac{\sum_{i=1}^{n} s_{i}}{n} & =\frac{n\left(\sum_{i=1}^{n} s_{i}\right)+\sum_{i=1}^{n} s_{i}}{n(n+1)} \\
& =\frac{\sum_{i=1}^{n} s_{i}+\frac{\sum_{i=1}^{n} s_{i}}{n}}{n+1} \\
& <\frac{\sum_{i=1}^{n} s_{i}+s_{n+1}}{n+1}
\end{aligned}
$$

Where I use that

$$
\sum_{i=1}^{n} s_{i}<\sum_{i=1}^{n} s_{n+1}=n s_{n+1}
$$

10.9

(a)

$$
\begin{aligned}
& s_{2}=\frac{2}{3} \\
& s_{3}=\frac{3}{4} \frac{4}{9} \\
& s_{4}=\frac{4}{5}\left(\frac{3}{4}\right)^{2}\left(\frac{2}{3}\right)^{4}
\end{aligned}
$$

(b) This is a positive sequence of monotonically decreasing numbers as multiplying by a number <1 reduces it. Therefore it has a limit.
(c) This is upper bounded by $(2 / 3)^{n}$ and therefore it decreases to 0 .

10.10

(a)

$$
\begin{aligned}
s_{2} & =\frac{2}{3} \\
s_{3} & =\frac{5}{9} \\
s_{4} & =\frac{14}{27}
\end{aligned}
$$

(b) The base cases were shown above.

$$
\begin{aligned}
s_{n} & >1 / 2 \\
\frac{s_{n}+1}{3} & >\frac{3}{2} \frac{1}{3}=\frac{1}{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\frac{1}{2} & <s_{n} \\
\frac{1}{3} & <\frac{2}{3} s_{n} \\
\frac{1}{3}+\frac{1}{3} s_{n} & <s_{n}
\end{aligned}
$$

(d) Existence follows by the sequence being monotone and therefore by taking the limit of both sides of the recursion and letting

$$
\begin{aligned}
\lim s_{n} & =\frac{1}{3} \lim s_{n}+\frac{1}{3} \\
\lim s_{n} & =\frac{1}{2}
\end{aligned}
$$

10.11

(a) It exists because it's a monotone decreasing seequence.
(b) I'm guessing some weird number like $\pi / 6$, as I don't think it decays fast enough to reach 0

Squeeze Test

Let $\varepsilon>0$. Then for some $N, M,\left|c_{n}-L\right|,\left|a_{m}-L\right| \leq \varepsilon$ for all $n \geq N$ and $m \geq M$. Therefore $\left|b_{n}-L\right| \leq \varepsilon$ for all $n \geq \max (N, M)$.

