Ross 1.10

Prove 2n+ 1) + (2n + 3) + -+ + (4n — 1) = 3n? for all positive integers n.

Proof:

Let P(n) be 2n+ 1) + (2n+ 3) + -+ (4n — 1) = 3n?

Base Case:

P(1)
LHS=2-1+1)=3
RHS=3-(1)2=3
We have RHS = LHS

Inductive Hypothesis:

Inductive Step:

Assume P (k) if true for some positive integer k
Thatis, 2-k+ 1)+ (2-k+3) + -+ (4 -k — 1) = 3k?

Note that we can rewrite the equation above to
QR+ -1+ QUh+1)+1)+ -+ 4k + 1) —5) = 3k?

We then subtract (2(k + 1) — 1) on both side and get:
Qk+D+D++UKE+1)-5=3k*- 2Kk+1)-1)

Then we add (4(k + 1) — 3) and (4(k + 1) — 1) to achieve our goal and get:
k+D)+D)++@k+D)-5+UKk+1D)-3)+@Kk+D -1
=3k?2— Qk+D-D+U@k+1D)-3)+A@Ek+1D—-1)

We can simplify(4(k + 1) — 3) and (4(k + 1) — 1) by combining them together with
(4(k +1) —5) and get:

Qk+D)+1D++U@UK+1)—-1)=3k>—6k+3=3k?-2k+1)
We can further simplify and get:

Qk+D+D++UE+1D)—-1) =3k+1)?
which is what P(k + 1) says.

So if P(n) is true for some positive integer k, then it must also be true for k + 1.

By mathematical induction, (2n + 1) + (2n + 3) + --- + (4n — 1) = 3n? for all positive integer n.



Ross 1.12

The binomial theorem asserts that
n

oy = (e (oo (s e (2 s+ (o

1
=a*+na" b+ Ena"‘zb2 + -+ nab™ ! + p*

(a.) Verify the binomial theorem for n = 1, 2, and 3.

) show (1) +(, = 1) = ("} Dirk=12,...n.

(c.) Prove the binomial theorem using mathematical induction and part (b.)

Let Py be (a+b)" = () a" + (1) a1 + (3) a2 + 4 ([ | Jabrt + (1) b

1
=a™ +na™* b + Ena"‘zb2 + -+ nab™ ' + p"

(a.) P(1):
LHS: (a+b)*=a+b
RHS:a'+1-a"'h=a+b = LHS = RHS, so this is true forn = 1
P(2):
LHS: (a + b)? = a? + 2ab + b?
RHS:a?+2-a?> b +1-a%2b? = a? + 2ab + b? = LHS = RHS, so this is true for n = 2
P(3):

LHS: (a + b))% = a® + 3a%b + 3ab? + b3
RHS:a®+3-a® b +3-a%2b2+1-a%3bh% =a® + 3a?b + 3ab? + b®
= LHS = RHS, so this is true forn = 3

(b.)
n n n! n! 1 1 (n-k+1)+(k)
= =nl. —_ 7
(k) + (k - 1) k!-(n—k)! + (k—1)!-(n—k+1)! n ((k—l)!-k-(n—k)! + (k—l)!(n—k)!-(n—k+1)) n ( kl(n—k+1)! )
— . n+1 — . . 1 _ (n+1)! _(n +1
n (k!-((n+1)—k)) nt-(n+1) (k!-((n+1)—k) k!-((n+1)-k) ( k )
(c.) Base Case:

Shown in part (a)

Inductive Hypothesis:
Assume P (k) is true for some positive integer k

This means that (a + b)¥ = Y& (k) ak-ipi

Inductive Step:
To get (a + b)**1, we multiply another (a + b):

K
(a+ b)Yt =(a+b) - Z (]:) ak-ipt = (a

k
> (a+ b)k+! = ( ko (’lf) ak—i+1bi) n ( K (’?3 ak—ibi+1)

@) ak—ibi> + (bi ) ak—ibi>

i=0

We can rewrite this as:

k k-1
(a + b)Y+t = (’8) ak+ 4 Z (ILC) ak-i+1pi | & (i) pk+1 4 Z (’lf) qk-ipitt
i=1 i=0



Set the index of the second summation start from 1 and get:

K K
(a + b)Y+t = (I(C)) ak+ 4 Z (I:) ak-i+1pi | & (i) pk+1 4 Z (i if 1) qk-i+1pi
Now, we get:
(a+ b)+t = (k) k+1 + bk+1 +Z + gk-i+1pi

Use part(b.) and we get:

(a+ byt = (k) k+1 + bk+1 +Z k+ 1 qk-i+1pi

Note that (](;) (k 2)— 1) =1 and (:) = (Ilz i i) =1

Rewrite the formula:

0 k+1

k+1

= (a + b)k+1 — Z (k ‘:’ 1) + a(k+1)—ibi

i=0

k
(a+ b+t = (k + 1) K+l (k +1 bk+1 n Z (k 4; 1) 4 gk-i*1pi

Since (a + b)*1 = yk#1 (" T 1) + aU+D=ipi P(k + 1) is true.

So if P(n) is true for some positive integer k, then it must also be true for k + 1.

By mathematical induction, the binomial theorem holds true for all positive integer n.



Ross 2.2

Show V2, 1/5, V13

(1.) Note that /2 is the solution to x3 — 2 = 0
The only possible rational solutions by the Rational Zeros Theorem are +2
Since ¥/2 is a solution and is none of +2, it is not rational.

(2.) Note that /5 is the solution to x” — 5 = 0
The only possible rational solutions by the Rational Zeros Theorem are +5
Since /5 is a solution and is none of +5, it is not rational.

(3.) Note thatV/13 is the solution to x* — 13 = 0
The only possible rational solutions by the Rational Zeros Theorem are +13
Since V13 is a solution and is none of +13, it is not rational.



Ross 3.6

(a.) Prove |a+b+c| < |a| + |b| + |c| foralla,b,c € R.
(b.) Use induction to prove:
las+a, ++a,| < la |+ |ap| ++ |a,]

for n numbers a4, a,, ..., a,

(a.) |a+b+c| = |(a+b)+c|
By the triangle inequality: |(a+b) +c| < |a+b| + |c|

By the triangle inequality: |a+b| < |a| + |b|
So|a+b| + |C| < |a| + |b| + |c|

Note that | (@ +b) +c| < |a+b]| + |c|
So |(a+b)+c| < |a| + |b| + |c|

Thus, |a+b+c| < |a| + |b| + |c|

(b.) Let P(n) be
lay +ay ++a,| < |a| + |ay| ++ |a,|

for n numbers a4, a,, ..., a,

Base Case: P(1)
It is true that |0L1 | < |a1|

Inductive Hypothesis: P (k)
Assume it is true for some positive integer k.
That is,

lay +a, ++a| < la| + |ay]| ++ |

Inductive Step: P(k + 1)
By triangle inequality,
[@ +a,+ ot a) +ap| < la+a+ -+ a ] + |ap.|

By the inductive hypothesis
lay + @+t + laen | < la ]+ lap ]|+ + lae] + | ap |

So,
(@i +a, ++a) +aa | < la| + |ap| ++ |ae] + ||

So if it is true for k, then itis true for k + 1

By the mathematical induction, | a +a, +--+a, | < | a, | + | a, | + -+ | a, | for n numbers
a;, ay, ..., ay



Ross 4.11

Consider a, b € R where a < b. Use Denseness of Q4.7 to show there are infinitely many rationals between a
and b.

Denseness of Q: If a, b € Rand a < b, then there is a rational r € Q such thata <r < b.

Leta,b € Rwherea < b.

a+b
Letc = —;—

Note that since aTer < %, c<b

a+b a+a
AlSO’T>T’ a<c

Thenwe'llhavea <c <b
Similarly, we canletd = aTHande = %to geta<d<c<e<b

We can keep doing this infinitely times

Therefore, there are infinitely many rationals between a and b.



Ross 4.14

Let A and B be nonempty bounded subsets of R, and let A + B be the set of all sums a + b where a € 4 and
b € B.

(a.) Prove sup(4 + B) = supA + supB.
(b.) Prove inf(A + b) = infA + infB.

(a.) By the definition of supremum, supA > a and supB = b
= supA + supB = (a + b)

Note that since (a + b) € (4 + B) and supA + supB = (a + b) holds for arbitrary a and b, and
sup(A+ B) € (A+B),
supA + supB = sup (4 + B)

Again by the definition of supremum, sup(4 + B) = (a + b)

Note that since a is any arbitrary number in 4 and b is any arbitrary number in B, and supA is a number
in A and supB is a number in B, sup(4 + B) = supA + supB holds true.

We have
supA + supB = sup (4 + B)
and

sup(4 + B) = supA
So, sup(4 + B) = supA + supB.

(b.) By the definition infimum, infA < aand infB < b
= infA+infB < (a+Db)

Note that since (a + b) € (A + B) and infA + infB < (a + b) holds for arbitrary a and b, and
inf(A+ B) € (A+ B),
infA+infB <inf (A + B)

Again by the definition of infimum, inf(4 + B) < (a + b)

Note that since a is any arbitrary number in 4 and b is any arbitrary number in B, and supA is a number
in A and supB is a number in B, inf(4 + B) < infA + infB holds true.

We have
infA+infB <inf (A + B)
and

inf(A + B) < supA
So, inf(4 + B) = infA + infB.



Ross 7.5

Determine the following limits

(a) lims, wheres, =vVnZ +1—n
(b) lim(vVn? + n —n)

(c.) lim (V4n? + n — 2n)

(a)limvn?+1—n
Asn — oo, we can ignore the 1 in the square root and get:
limyn?2+1—-n=Ilimyn?—n=Ilimn—-n=0

(b) lim(VnZ +n —n)
As n - o0, n2grows much faster than n, and hence we can ignore n and get:

limyn2+n—n=limyn2—n=limn—-n=20

(c) lim(V4nZ + n — 2n)
As n - o0, 4n?grows much faster than n, and hence we can ignore n and get:
limy/4n? + n —2n =lim+/4n? —2n =1lim2n - 2n =0



