Ross 1.10

Prove $(2 n+1)+(2 n+3)+\cdots+(4 n-1)=3 n^{2}$ for all positive integers n.

Proof:

Let $P(n)$ be $(2 n+1)+(2 n+3)+\cdots+(4 n-1)=3 n^{2}$
Base Case: $\quad P(1)$
LHS $=(2 \cdot 1+1)=3$
RHS $=3 \cdot(1)^{2}=3$
We have RHS = LHS
Inductive Hypothesis:
Assume $P(k)$ if true for some positive integer k
That is, $(2 \cdot k+1)+(2 \cdot k+3)+\cdots+(4 \cdot k-1)=3 k^{2}$

Inductive Step:
Note that we can rewrite the equation above to

$$
(2(k+1)-1)+(2(k+1)+1)+\cdots+(4(k+1)-5)=3 k^{2}
$$

We then subtract $(2(k+1)-1)$ on both side and get:

$$
(2(k+1)+1)+\cdots+(4(k+1)-5)=3 k^{2}-(2(k+1)-1)
$$

Then we add $(4(k+1)-3)$ and $(4(k+1)-1)$ to achieve our goal and get:

$$
\begin{aligned}
& (2(k+1)+1)+\cdots+(4(k+1)-5)+(4(k+1)-3)+(4(k+1)-1) \\
& =3 k^{2}-(2(k+1)-1)+(4(k+1)-3)+(4(k+1)-1)
\end{aligned}
$$

We can simplify $(4(k+1)-3)$ and $(4(k+1)-1)$ by combining them together with $(4(k+1)-5)$ and get:

$$
(2(k+1)+1)+\cdots+(4(k+1)-1)=3 k^{2}-6 k+3=3\left(k^{2}-2 k+1\right)
$$

We can further simplify and get:

$$
(2(k+1)+1)+\cdots+(4(k+1)-1)=3(k+1)^{2}
$$

which is what $P(k+1)$ says.

So if $P(n)$ is true for some positive integer k, then it must also be true for $k+1$.
By mathematical induction, $(2 n+1)+(2 n+3)+\cdots+(4 n-1)=3 n^{2}$ for all positive integer n.

Ross 1.12

The binomial theorem asserts that

$$
\begin{aligned}
(a+b)^{n} & =\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n} \\
& =a^{n}+n a^{n-1} b+\frac{1}{2} n a^{n-2} b^{2}+\cdots+n a b^{n-1}+b^{n}
\end{aligned}
$$

(a.) Verify the binomial theorem for $n=1,2$, and 3 .
(b.) Show $\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}$ for $k=1,2, \ldots, n$.
(c.) Prove the binomial theorem using mathematical induction and part (b.)

Let $P(n)$ be $(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n}$

$$
=a^{n}+n a^{n-1} b+\frac{1}{2} n a^{n-2} b^{2}+\cdots+n a b^{n-1}+b^{n}
$$

(a.) $P(1)$:

LHS: $(a+b)^{1}=a+b$

$$
\text { RHS: } a^{1}+1 \cdot a^{1-1} b=a+b \quad \Rightarrow \text { LHS }=\text { RHS, so this is true for } n=1
$$

$P(2)$:
LHS: $(a+b)^{2}=a^{2}+2 a b+b^{2}$

$$
\text { RHS: } a^{2}+2 \cdot a^{2-1} b+1 \cdot a^{2-2} b^{2}=a^{2}+2 a b+b^{2} \quad \Rightarrow \text { LHS }=\text { RHS, so this is true for } n=2
$$ $P(3)$:

$$
\text { LHS: }(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
$$

$$
\text { RHS: } a^{3}+3 \cdot a^{3-1} b+3 \cdot a^{3-2} b^{2}+1 \cdot a^{3-3} b^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
$$

$$
\Rightarrow \text { LHS }=\text { RHS, so this is true for } n=3
$$

(b.)

$$
\begin{aligned}
& \binom{n}{k}+\binom{n}{k-1}=\frac{n!}{k!\cdot(n-k)!}+\frac{n!}{(k-1)!\cdot(n-k+1)!}=n!\cdot\left(\frac{1}{(k-1)!\cdot k \cdot(n-k)!}+\frac{1}{(k-1)!(n-k)!\cdot(n-k+1)}\right)=n!\cdot\left(\frac{(n-k+1)+(k)}{k!(n-k+1)!}\right) \\
& =n!\cdot\left(\frac{n+1}{k!\cdot((n+1)-k)}\right)=n!\cdot(n+1) \cdot\left(\frac{1}{k!\cdot((n+1)-k)}\right)=\left(\frac{(n+1)!}{k!\cdot((n+1)-k)}\right)=\binom{n+1}{k}
\end{aligned}
$$

(c.) Base Case:

Shown in part (a)
Inductive Hypothesis:
Assume $P(k)$ is true for some positive integer k
This means that $(a+b)^{k}=\sum_{i=0}^{k}\binom{k}{i} a^{k-i} b^{i}$
Inductive Step:
To get $(a+b)^{k+1}$, we multiply another $(a+b)$:

$$
\begin{aligned}
&(a+b)^{k+1}=(a+b) \cdot \sum_{i=0}^{k}\binom{k}{i} a^{k-i} b^{i}=\left(a \sum_{i=0}^{k}\binom{k}{i} a^{k-i} b^{i}\right)+\left(b \sum_{i=0}^{k}\binom{k}{i} a^{k-i} b^{i}\right) \\
& \Rightarrow(a+b)^{k+1}=\left(\sum_{i=0}^{k}\binom{k}{i} a^{k-i+1} b^{i}\right)+\left(\sum_{i=0}^{k}\binom{k}{i} a^{k-i} b^{i+1}\right)
\end{aligned}
$$

We can rewrite this as:

$$
(a+b)^{k+1}=\left(\binom{k}{0} a^{k+1}+\sum_{i=1}^{k}\binom{k}{i} a^{k-i+1} b^{i}\right)+\left(\binom{k}{k} b^{k+1}+\sum_{i=0}^{k-1}\binom{k}{i} a^{k-i} b^{i+1}\right)
$$

Set the index of the second summation start from 1 and get:

$$
(a+b)^{k+1}=\left(\binom{k}{0} a^{k+1}+\sum_{i=1}^{k}\binom{k}{i} a^{k-i+1} b^{i}\right)+\left(\binom{k}{k} b^{k+1}+\sum_{i=1}^{k}\binom{k}{i-1} a^{k-i+1} b^{i}\right)
$$

Now, we get:

$$
(a+b)^{k+1}=\left(\binom{k}{0} a^{k+1}+\binom{k}{k} b^{k+1}+\sum_{i=1}^{k}\binom{k}{i}\binom{k}{i-1}+a^{k-i+1} b^{i}\right)
$$

Use part(b.) and we get:

$$
(a+b)^{k+1}=\binom{k}{0} a^{k+1}+\binom{k}{k} b^{k+1}+\sum_{i=1}^{k}\binom{k+1}{i}+a^{k-i+1} b^{i}
$$

Note that $\binom{k}{0}=\binom{k+1}{0}=1$ and $\binom{k}{k}=\binom{k+1}{k+1}=1$
Rewrite the formula:

$$
\begin{aligned}
&(a+b)^{k+1}= \\
& \Rightarrow\binom{k+1}{0} a^{k+1}+\binom{k+1}{k+1} b^{k+1}+\sum_{i=1}^{k}\binom{k+1}{i}+a^{k+i+1} b^{i} \\
&=\sum_{i=0}^{k+1}\binom{k+1}{i}+a^{(k+1)-i} b^{i}
\end{aligned}
$$

Since $(a+b)^{k+1}=\sum_{i=0}^{k+1}\binom{k+1}{i}+a^{(k+1)-i} b^{i}, P(k+1)$ is true.

So if $P(n)$ is true for some positive integer k, then it must also be true for $k+1$.
By mathematical induction, the binomial theorem holds true for all positive integer n.

Ross 2.2

Show $\sqrt[3]{2}, \sqrt[7]{5}, \sqrt[4]{13}$
(1.) Note that $\sqrt[3]{2}$ is the solution to $x^{3}-2=0$

The only possible rational solutions by the Rational Zeros Theorem are ± 2 Since $\sqrt[3]{2}$ is a solution and is none of ± 2, it is not rational.
(2.) Note that $\sqrt[7]{5}$ is the solution to $x^{7}-5=0$

The only possible rational solutions by the Rational Zeros Theorem are ± 5 Since $\sqrt[7]{5}$ is a solution and is none of ± 5, it is not rational.
(3.) Note that $\sqrt[4]{13}$ is the solution to $x^{4}-13=0$

The only possible rational solutions by the Rational Zeros Theorem are ± 13
Since $\sqrt[4]{13}$ is a solution and is none of ± 13, it is not rational.

Ross 3.6

(a.) Prove $|a+b+c| \leq|a|+|b|+|c|$ for all $a, b, c \in \mathbb{R}$.
(b.) Use induction to prove:

$$
\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|
$$

for n numbers $a_{1}, a_{2}, \ldots, a_{n}$
(a.) $|a+b+c|=|(a+b)+c|$

By the triangle inequality: $|(a+b)+c| \leq|a+b|+|c|$
By the triangle inequality: $|a+b| \leq|a|+|b|$
So $|a+b|+|c| \leq|a|+|b|+|c|$
Note that $|(a+b)+c| \leq|a+b|+|c|$
So $|(a+b)+c| \leq|a|+|b|+|c|$
Thus, $|a+b+c| \leq|a|+|b|+|c|$
(b.) Let $P(n)$ be

$$
\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|
$$

for n numbers $a_{1}, a_{2}, \ldots, a_{n}$

Base Case: $P(1)$
It is true that $\left|a_{1}\right| \leq\left|a_{1}\right|$
Inductive Hypothesis: $P(k)$
Assume it is true for some positive integer k.
That is,

$$
\left|a_{1}+a_{2}+\cdots+a_{k}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{k}\right|
$$

Inductive Step: $P(k+1)$
By triangle inequality,

$$
\left|\left(a_{1}+a_{2}+\cdots+a_{k}\right)+a_{k+1}\right| \leq\left|a_{1}+a_{2}+\cdots+a_{k}\right|+\left|a_{k+1}\right|
$$

By the inductive hypothesis

$$
\left|a_{1}+a_{2}+\cdots+a_{k}\right|+\left|a_{k+1}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{k}\right|+\left|a_{k+1}\right|
$$

So,

$$
\left|\left(a_{1}+a_{2}+\cdots+a_{k}\right)+a_{k+1}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{k}\right|+\left|a_{k+1}\right|
$$

So if it is true for k, then it is true for $k+1$
By the mathematical induction, $\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|$ for n numbers $a_{1}, a_{2}, \ldots, a_{n}$

Ross 4.11

Consider $a, b \in \mathbb{R}$ where $a<b$. Use Denseness of $\mathbb{Q} 4.7$ to show there are infinitely many rationals between a and b.

Denseness of \mathbb{Q} : If $a, b \in \mathbb{R}$ and $a<b$, then there is a rational $r \in \mathbb{Q}$ such that $a<r<b$.
Let $a, b \in \mathbb{R}$ where $a<b$.
Let $c=\frac{a+b}{2}$
Note that since $\frac{a+b}{2}<\frac{b+b}{2}, c<b$
Also, $\frac{a+b}{2}>\frac{a+a}{2}, a<c$
Then we'll have $a<c<b$
Similarly, we can let $d=\frac{a+c}{2}$ and $e=\frac{c+b}{2}$ to get $a<d<c<e<b$
We can keep doing this infinitely times
Therefore, there are infinitely many rationals between a and b.

Ross 4.14

Let A and B be nonempty bounded subsets of \mathbb{R}, and let $A+B$ be the set of all sums $a+b$ where $a \in A$ and $b \in B$.
(a.) Prove $\sup (A+B)=\sup A+\sup B$.
(b.) Prove $\inf (A+b)=\inf A+\inf B$.
(a.) By the definition of supremum, $\sup A \geq a$ and $\sup B \geq b$
$\Rightarrow \sup A+\sup B \geq(a+b)$
Note that since $(a+b) \in(A+B)$ and $\sup A+\sup B \geq(a+b)$ holds for arbitrary a and b, and $\sup (A+B) \in(A+B)$,

$$
\sup A+\sup B \geq \sup (A+B)
$$

Again by the definition of supremum, $\sup (A+B) \geq(a+b)$
Note that since a is any arbitrary number in A and b is any arbitrary number in B, and $\sup A$ is a number in A and $\sup B$ is a number in $B, \sup (A+B) \geq \sup A+\sup B$ holds true.

We have

$$
\sup A+\sup B \geq \sup (A+B)
$$

and

$$
\sup (A+B) \geq \sup A
$$

So, $\sup (A+B)=\sup A+\sup B$.
(b.) By the definition infimum, $\inf A \leq a$ and $\inf B \leq b$
$\Rightarrow \inf A+\inf B \leq(a+b)$
Note that since $(a+b) \in(A+B)$ and $\inf A+\inf B \leq(a+b)$ holds for arbitrary a and b, and $\inf (A+B) \in(A+B)$,

$$
\inf A+\inf B \leq \inf (A+B)
$$

Again by the definition of infimum, $\inf (A+B) \leq(a+b)$
Note that since a is any arbitrary number in A and b is any arbitrary number in B, and $\sup A$ is a number in A and $\sup B$ is a number in $B, \inf (A+B) \leq \inf A+\inf B$ holds true.

We have

$$
\inf A+\inf B \leq \inf (A+B)
$$

and

$$
\inf (A+B) \leq \sup A
$$

So, $\inf (A+B)=\inf A+\inf B$.

Ross 7.5

Determine the following limits
(a.) $\lim s_{n}$ where $s_{n}=\sqrt{n^{2}+1}-n$
(b.) $\lim \left(\sqrt{n^{2}+n}-n\right)$
(c.) $\lim \left(\sqrt{4 n^{2}+n}-2 n\right)$
(a.) $\lim \sqrt{n^{2}+1}-n$

As $n \rightarrow \infty$, we can ignore the 1 in the square root and get:

$$
\lim \sqrt{n^{2}+1}-n=\lim \sqrt{n^{2}}-n=\lim n-n=0
$$

(b.) $\lim \left(\sqrt{n^{2}+n}-n\right)$

As $n \rightarrow \infty, n^{2}$ grows much faster than n, and hence we can ignore n and get:

$$
\lim \sqrt{n^{2}+n}-n=\lim \sqrt{n^{2}}-n=\lim n-n=0
$$

(c.) $\lim \left(\sqrt{4 n^{2}+n}-2 n\right)$

As $n \rightarrow \infty, 4 n^{2}$ grows much faster than n, and hence we can ignore n and get:

$$
\lim \sqrt{4 n^{2}+n}-2 n=\lim \sqrt{4 n^{2}}-2 n=\lim 2 n-2 n=0
$$

