
Ross 1.10 
 
Prove (2𝑛 + 1) + (2𝑛 + 3) +⋯+ (4𝑛 − 1) = 3𝑛! for all positive integers 𝑛. 
Proof: 
 
Let 𝑃(𝑛) be (2𝑛 + 1) + (2𝑛 + 3) +⋯+ (4𝑛 − 1) = 3𝑛! 
 
Base Case:  𝑃(1) 
  LHS = (2 ⋅ 1 + 1) = 3 
  RHS = 3 ⋅ (1)! = 3 
  We have RHS = LHS 
 
Inductive Hypothesis:  

Assume 𝑃(𝑘) if true for some positive integer 𝑘 
 That is, (2 ⋅ 𝑘 + 1) + (2 ⋅ 𝑘 + 3) +⋯+ (4 ⋅ 𝑘 − 1) = 3𝑘! 

 
 
Inductive Step: 
 
  Note that we can rewrite the equation above to  

(2(𝑘 + 1) − 1) + (2(𝑘 + 1) + 1) +⋯+ (4(𝑘 + 1) − 5) = 3𝑘! 
 
  We then subtract (2(𝑘 + 1) − 1) on both side and get: 

(2(𝑘 + 1) + 1) +⋯+ (4(𝑘 + 1) − 5) = 3𝑘! −	(2(𝑘 + 1) − 1) 
 
  Then we add (4(𝑘 + 1) − 3) and (4(𝑘 + 1) − 1) to achieve our goal and get: 

(2(𝑘 + 1) + 1) +⋯+ (4(𝑘 + 1) − 5) + (4(𝑘 + 1) − 3) + (4(𝑘 + 1) − 1)	
= 3𝑘! −	(2(𝑘 + 1) − 1) + (4(𝑘 + 1) − 3) + (4(𝑘 + 1) − 1) 

 
 
  We can simplify(4(𝑘 + 1) − 3) and (4(𝑘 + 1) − 1) by combining them together with 

(4(𝑘 + 1) − 5) and get: 
 

(2(𝑘 + 1) + 1) +⋯+ (4(𝑘 + 1) − 1) = 3𝑘! − 6𝑘 + 3 = 3(𝑘! − 2𝑘 + 1)	
 

We can further simplify and get: 
(2(𝑘 + 1) + 1) +⋯+ (4(𝑘 + 1) − 1) = 3(𝑘 + 1)! 

which is what 𝑃(𝑘 + 1) says. 
 
 
 

So if 𝑃(𝑛) is true for some positive integer 𝑘, then it must also be true for 𝑘 + 1. 
 

By mathematical induction, (2𝑛 + 1) + (2𝑛 + 3) +⋯+ (4𝑛 − 1) = 3𝑛! for all positive integer 𝑛. 
  



Ross 1.12 
 
The binomial theorem asserts that  

(𝑎 + 𝑏)" = 4𝑛06𝑎
" + 4𝑛16 𝑎

"#$𝑏 + 4𝑛26 𝑎
"#!𝑏! +⋯+ 4 𝑛

𝑛 − 16𝑎𝑏
"#$ + 4𝑛𝑛6 𝑏

"	 

= 𝑎" + 𝑛𝑎"#$𝑏 +
1
2𝑛𝑎

"#!𝑏! +⋯+ 𝑛𝑎𝑏"#$ + 𝑏"																		
							 

(a.) Verify the binomial theorem for 𝑛 = 1, 2, 𝑎𝑛𝑑	3. 
(b.) Show 4𝑛𝑘6 + 4

𝑛
𝑘 − 16 = 4𝑛 + 1𝑘 6 for 𝑘 = 1, 2,… , 𝑛. 

(c.) Prove the binomial theorem using mathematical induction and part (b.) 
 Let 𝑃(𝑛) be (𝑎 + 𝑏)" = 4𝑛06𝑎

" + 4𝑛16 𝑎
"#$𝑏 + 4𝑛26 𝑎

"#!𝑏! +⋯+ 4 𝑛
𝑛 − 16𝑎𝑏

"#$ + 4𝑛𝑛6 𝑏
"	 

= 𝑎" + 𝑛𝑎"#$𝑏 +
1
2𝑛𝑎

"#!𝑏! +⋯+ 𝑛𝑎𝑏"#$ + 𝑏"																																							 
 
(a.) 𝑃(1): 
 LHS: (𝑎 + 𝑏)$ = 𝑎 + 𝑏 
 RHS: 𝑎$ + 1 ⋅ 𝑎$#$𝑏 = 𝑎 + 𝑏    ⇒ LHS = RHS, so this is true for 𝑛 = 1 
							𝑃(2): 
 LHS: (𝑎 + 𝑏)! = 𝑎! + 2𝑎𝑏 + 𝑏! 
 RHS: 𝑎! + 2 ⋅ 𝑎!#$𝑏 + 1 ⋅ 𝑎!#!𝑏! = 𝑎! + 2𝑎𝑏 + 𝑏!  ⇒ LHS = RHS, so this is true for 𝑛 = 2 
							𝑃(3): 
 LHS: (𝑎 + 𝑏)% = 𝑎% + 3𝑎!𝑏 + 3𝑎𝑏! + 𝑏% 
 RHS: 𝑎% + 3 ⋅ 𝑎%#$𝑏 + 3 ⋅ 𝑎%#!𝑏! + 1 ⋅ 𝑎%#%𝑏% = 𝑎% + 3𝑎!𝑏 + 3𝑎𝑏! + 𝑏% 
        ⇒ LHS = RHS, so this is true for 𝑛 = 3 
(b.) 
 4𝑛𝑘6 + 4

𝑛
𝑘 − 16 =

"!
'!⋅("#')!

+ "!
('#$)!⋅("#'+$)!

= 𝑛! ⋅ 4 $
('#$)!⋅'⋅("#')!

+ $
('#$)!("#')!⋅("#'+$)

6 = 𝑛! ⋅ 4("#'+$)+(')
'!("#'+$)!

6 

= 𝑛! ⋅ = "+$
'!⋅,("+$)#'-

> = 𝑛! ⋅ (𝑛 + 1) ⋅ = $
'!⋅,("+$)#'-

> = = ("+$)!
'!⋅,("+$)#'-

> = 	 4𝑛 + 1𝑘 6  
 
(c.) Base Case:  
 Shown in part (a) 
 
       Inductive Hypothesis:  
 Assume 𝑃(𝑘) is true for some positive integer 𝑘 
 This means that (𝑎 + 𝑏)' = ∑ 4𝑘𝑖 6 𝑎

'#.𝑏.'
./0  

 
       Inductive Step: 
 To get (𝑎 + 𝑏)'+$, we multiply another (𝑎 + 𝑏): 

(𝑎 + 𝑏)'+$ = (𝑎 + 𝑏) ⋅A4𝑘𝑖 6 𝑎
'#.𝑏.

'

./0

= B𝑎A4𝑘𝑖 6𝑎
'#.𝑏.

'

./0

C + B𝑏A4𝑘𝑖6 𝑎
'#.𝑏.

'

./0

C 

        ⇒ (𝑎 + 𝑏)'+$ = 4∑ 4𝑘𝑖 6 𝑎
'#.+$𝑏.'

./0 6 + 4∑ 4𝑘𝑖 6 𝑎
'#.𝑏.+$'

./0 6 
 
 We can rewrite this as: 

(𝑎 + 𝑏)'+$ = D4𝑘06 𝑎
'+$ +A4𝑘𝑖6 𝑎

'#.+$𝑏.
'

./$

E+ D4𝑘𝑘6𝑏
'+$ +A4𝑘𝑖6 𝑎

'#.𝑏.+$
'#$

./0

E 

 
 
 
 



 Set the index of the second summation start from 1 and get: 

(𝑎 + 𝑏)'+$ = D4𝑘06 𝑎
'+$ +A4𝑘𝑖 6𝑎

'#.+$𝑏.
'

./$

E+ D4𝑘𝑘6𝑏
'+$ +A4 𝑘

𝑖 − 16𝑎
'#.+$𝑏.

'

./$

E 

 
 Now, we get:  
 

(𝑎 + 𝑏)'+$ = D4𝑘06𝑎
'+$ + 4𝑘𝑘6 𝑏

'+$ +A4𝑘𝑖6 4
𝑘

𝑖 − 16 + 𝑎
'#.+$𝑏.

'

./$

E 

 
 Use part(b.) and we get: 

(𝑎 + 𝑏)'+$ = 4𝑘06 𝑎
'+$ + 4𝑘𝑘6 𝑏

'+$ +A4𝑘 + 1𝑖 6 + 𝑎'#.+$𝑏.
'

./$

 

 
 Note that 4𝑘06 = 4𝑘 + 10 6 = 1 and 4𝑘𝑘6 = 4𝑘 + 1𝑘 + 16 = 1 
 Rewrite the formula: 
 

(𝑎 + 𝑏)'+$ = 4𝑘 + 10 6 𝑎'+$ + 4𝑘 + 1𝑘 + 16 𝑏
'+$ +A4𝑘 + 1𝑖 6 + 𝑎'#.+$𝑏.

'

./$

 

⇒ (𝑎 + 𝑏)'+$ =A4𝑘 + 1𝑖 6 + 𝑎('+$)#.𝑏. 																																																															
'+$

./0

 

 
 
 Since (𝑎 + 𝑏)'+$ = ∑ 4𝑘 + 1𝑖 6 + 𝑎('+$)#.𝑏.	'+$

./0 , 𝑃(𝑘 + 1) is true. 
 
 
 
So if 𝑃(𝑛) is true for some positive integer 𝑘, then it must also be true for 𝑘 + 1. 

 
By mathematical induction, the binomial theorem holds true for all positive integer 𝑛. 
  



Ross 2.2 
 
Show √2! , √5" , √13#   
(1.)  Note that √2!  is the solution to 𝑥% − 2 = 0 

The only possible rational solutions by the Rational Zeros Theorem are ±2 
Since √2!  is a solution and is none of ±2, it is not rational. 
 

(2.) Note that √5"  is the solution to 𝑥1 − 5 = 0 
The only possible rational solutions by the Rational Zeros Theorem are ±5 
Since √5"  is a solution and is none of ±5, it is not rational. 

 
 
(3.) Note that√13#  is the solution to 𝑥2 − 13 = 0 

The only possible rational solutions by the Rational Zeros Theorem are ±13 
Since √13#   is a solution and is none of ±13, it is not rational. 

  



Ross 3.6 
 
(a.) Prove │𝑎 + 𝑏 + 𝑐│ ≤ │𝑎│ + │𝑏│ + │𝑐│ for all 𝑎, 𝑏, 𝑐 ∈ ℝ. 
(b.) Use induction to prove: 

│𝑎$ + 𝑎! +⋯+ 𝑎"│ ≤ │𝑎$│ + │𝑎!│ +⋯+ │𝑎"│ 
 

for 𝑛 numbers 𝑎$, 𝑎!, … , 𝑎" 
 
(a.) │𝑎 + 𝑏 + 𝑐│ = │(𝑎 + 𝑏) + 𝑐│ 
 

By the triangle inequality: │(𝑎 + 𝑏) + 𝑐│ ≤ 	│𝑎 + 𝑏│ + │𝑐│ 
 
By the triangle inequality: │𝑎 + 𝑏│ ≤ │𝑎│ + │𝑏│ 
So│𝑎 + 𝑏│ + │𝑐│ ≤ │𝑎│ + │𝑏│ + │𝑐│ 

 
Note that │(𝑎 + 𝑏) + 𝑐│ ≤ 	│𝑎 + 𝑏│ + │𝑐│ 
So  │(𝑎 + 𝑏) + 𝑐│ ≤ │𝑎│ + │𝑏│ + │𝑐│ 
 
Thus, │𝑎 + 𝑏 + 𝑐│ ≤ │𝑎│ + │𝑏│ + │𝑐│ 
 
 

(b.) Let 𝑃(𝑛) be 	
│𝑎$ + 𝑎! +⋯+ 𝑎"│ ≤ │𝑎$│ + │𝑎!│ +⋯+ │𝑎"│ 

 
for 𝑛 numbers 𝑎$, 𝑎!, … , 𝑎" 
 
 
Base Case: 𝑃(1) 
 It is true that │𝑎$│ ≤ │𝑎$│	 
 
Inductive Hypothesis: 𝑃(𝑘) 
 Assume it is true for some positive integer 𝑘. 
 That is, 	

│𝑎$ + 𝑎! +⋯+ 𝑎'│ ≤ │𝑎$│ + │𝑎!│ +⋯+ │𝑎'│	
	
Inductive	Step:	𝑃(𝑘 + 1)	
	 By	triangle	inequality,		

│(𝑎$ + 𝑎! +⋯+ 𝑎') + 𝑎'+$│ ≤ │𝑎$ + 𝑎! +⋯+ 𝑎'│ + │𝑎'+$│	
	
	 By	the	inductive	hypothesis	

│𝑎$ + 𝑎! +⋯+ 𝑎'│ + │𝑎'+$│ ≤ │𝑎$│ + │𝑎!│ +⋯+ │𝑎'│ + │𝑎'+$│	
	
	 So,		

│(𝑎$ + 𝑎! +⋯+ 𝑎') + 𝑎'+$│ ≤ │𝑎$│ + │𝑎!│ +⋯+ │𝑎'│ + │𝑎'+$│	
	
So	if	it	is	true	for	𝑘,	then	it	is	true	for	𝑘 + 1	
	
By	the	mathematical	induction,│𝑎$ + 𝑎! +⋯+ 𝑎"│ ≤ │𝑎$│ + │𝑎!│ +⋯+ │𝑎"│for 𝑛 numbers 
𝑎$, 𝑎!, … , 𝑎" 

	 	



Ross	4.11	
	
Consider	𝑎, 𝑏 ∈ ℝ	where	𝑎 < 𝑏.	Use	Denseness	of	ℚ4.7	to	show	there	are	infinitely	many	rationals	between	𝑎	
and	𝑏.	
	
Denseness	of	ℚ:	If	𝑎, 𝑏 ∈ ℝ	and	𝑎 < 𝑏,	then	there	is	a	rational	𝑟 ∈ ℚ	such	that	𝑎 < 𝑟 < 𝑏.	
Let	𝑎, 𝑏 ∈ ℝ	where	𝑎 < 𝑏.	
	
Let	𝑐 = 3+4

!
	

	
Note	that	since	3+4

!
< 4+4

!
,	𝑐 < 𝑏	

Also,	3+4
!
> 3+3

!
	,		𝑎 < 𝑐	

	
Then	we’ll	have	𝑎 < 𝑐 < 𝑏	
	
Similarly,	we	can	let	𝑑 = 3+5

!
	and	𝑒 = 5+4

!
	to	get	𝑎 < 𝑑 < 𝑐 < 𝑒 < 𝑏	

	
We	can	keep	doing	this	infinitely	times	
	
Therefore,	there	are	infinitely	many	rationals	between	𝑎	and	𝑏.	



Ross	4.14	
	
Let	𝐴	and	𝐵	be	nonempty	bounded	subsets	of	ℝ,	and	let	𝐴 + 𝐵	be	the	set	of	all	sums	𝑎 + 𝑏	where	𝑎 ∈ 𝐴	and	
𝑏 ∈ 𝐵.	
	
(a.)	Prove	sup(𝐴 + 𝐵) = 𝑠𝑢𝑝𝐴 + 𝑠𝑢𝑝𝐵.	
(b.)	Prove	inf(𝐴 + 𝑏) = 𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵.	
	
(a.)	By		the	definition	of	supremum,	𝑠𝑢𝑝𝐴 ≥ 𝑎	and	𝑠𝑢𝑝𝐵 ≥ 𝑏	
	 ⟹ 𝑠𝑢𝑝𝐴 + 𝑠𝑢𝑝𝐵 ≥ (𝑎 + 𝑏)	
	
	 Note	that	since	(𝑎 + 𝑏) ∈ (𝐴 + 𝐵)	and	𝑠𝑢𝑝𝐴 + 𝑠𝑢𝑝𝐵 ≥ (𝑎 + 𝑏)	holds	for	arbitrary	𝑎	and	𝑏,	and		
	 sup(𝐴 + 𝐵) ∈ (𝐴 + 𝐵),		

𝑠𝑢𝑝𝐴 + 𝑠𝑢𝑝𝐵 ≥ sup	(𝐴 + 𝐵)	
	
	 Again	by	the	definition	of	supremum,	sup(𝐴 + 𝐵) ≥ (𝑎 + 𝑏)	
	
	 Note	that	since	𝑎	is	any	arbitrary	number	in	𝐴	and	𝑏	is	any	arbitrary	number	in	𝐵,	and	𝑠𝑢𝑝𝐴	is	a	number	

in	𝐴	and	𝑠𝑢𝑝𝐵	is	a	number	in	𝐵,	sup(𝐴 + 𝐵) ≥ 𝑠𝑢𝑝𝐴 + 𝑠𝑢𝑝𝐵	holds	true.	
	
	 We	have		

𝑠𝑢𝑝𝐴 + 𝑠𝑢𝑝𝐵 ≥ sup	(𝐴 + 𝐵)	
	 and		
	

sup(𝐴 + 𝐵) ≥ 𝑠𝑢𝑝𝐴	
	 So,	sup(𝐴 + 𝐵) = 𝑠𝑢𝑝𝐴 + 𝑠𝑢𝑝𝐵.	
	
	
(b.)	By		the	definition	infimum,	𝑖𝑛𝑓𝐴 ≤ 𝑎	and	𝑖𝑛𝑓𝐵 ≤ 𝑏	
	 ⟹ 𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵 ≤ (𝑎 + 𝑏)	
	
	 Note	that	since	(𝑎 + 𝑏) ∈ (𝐴 + 𝐵)	and	𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵 ≤ (𝑎 + 𝑏)	holds	for	arbitrary	𝑎	and	𝑏,	and		
	 inf(𝐴 + 𝐵) ∈ (𝐴 + 𝐵),		

𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵 ≤ inf	(𝐴 + 𝐵)	
	
	

Again	by	the	definition	of	infimum,	inf(𝐴 + 𝐵) ≤ (𝑎 + 𝑏)	
	
	 Note	that	since	𝑎	is	any	arbitrary	number	in	𝐴	and	𝑏	is	any	arbitrary	number	in	𝐵,	and	𝑠𝑢𝑝𝐴	is	a	number	

in	𝐴	and	𝑠𝑢𝑝𝐵	is	a	number	in	𝐵,	inf(𝐴 + 𝐵) ≤ 𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵	holds	true.	
	
	 We	have		

𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵 ≤ inf	(𝐴 + 𝐵)	
	 and		
	

inf(𝐴 + 𝐵) ≤ 𝑠𝑢𝑝𝐴	
	 So,	inf(𝐴 + 𝐵) = 𝑖𝑛𝑓𝐴 + 𝑖𝑛𝑓𝐵.	
	 	



Ross	7.5	
	
Determine	the	following	limits	
(a.)	lim 𝑠"	where	𝑠" = √𝑛! + 1 − 𝑛	
(b.)	lim�√𝑛! + 𝑛 − 𝑛�	
(c.)	lim	(√4𝑛! + 𝑛 − 2𝑛)	
(a.)	lim√𝑛! + 1 − 𝑛	
	 As	𝑛 → ∞,	we	can	ignore	the	1	in	the	square	root	and	get:	

lim�𝑛! + 1 − 𝑛 = lim�𝑛! − 𝑛 = lim𝑛 − 𝑛 = 0	
	

	
(b.)	lim�√𝑛! + 𝑛 − 𝑛�	

As	𝑛 → ∞,	𝑛!grows	much	faster	than	𝑛,	and	hence	we	can	ignore	𝑛	and	get:	
lim�𝑛! + 𝑛 − 𝑛 = lim�𝑛! − 𝑛 = lim𝑛 − 𝑛 = 0	

	
	
(c.)	lim�√4𝑛! + 𝑛 − 2𝑛�	

As	𝑛 → ∞,	4𝑛!grows	much	faster	than	𝑛,	and	hence	we	can	ignore	𝑛	and	get:	
lim�4𝑛! + 𝑛 − 2𝑛 = lim�4𝑛! − 2𝑛 = lim2𝑛 − 2𝑛 = 0	

	


