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Ross 1.10

We’d like to show that (2n+ 1) + (2n+ 3) + ...+ (4n− 1) = 3n2 for n ∈ Z+.
Base Case: n = 1

2(1) + 1 = 3 = 3(1)2

as desired.
Inductive Step: Now we assume that for some fixed n, (2n+1)+ (2n+3)+ ...+ (4n− 1) = 3n2.
We have:

(2(n+ 1) + 1) + (2(n+ 1) + 3) + ...+ (4(n+ 1)− 1)

= (2n+ 3) + (2n+ 5) + ...+ (4n+ 1) + (4n+ 3)

= 3n2 − (2n+ 1) + (4n+ 1+(4n+ 3)

= 3n2 + 6n+ 3

= 3(n+ 1)2

where the third equality holds via our inductive hypothesis.
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a.
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c. We start with our base case (which we’ve already verified in part (a). We proceed assuming the
binomial theorem holds for some fixed n.

(a+ b)n+1 = (a+ b)(a+ b)n = (a+ b)

((
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)
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n
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)
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)
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)
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)
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)
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)
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The inner grouped term is a result of combining like terms, which appear when multiplying one
term by a and another by b yields a ”like” monomial. We recognize that

(
n
0

)
=
(
n+1
0

)
=
(
n
n

)
=(

n+1
n+1

)
, and also use the identity in part (b) to simplify our earlier expression to:(
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)
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which is the desired result.
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We want to show that each of the following numbers is irrational. We use the rational roots theorem
to classify all possible rational roots for each numbers’ corresponding polynomial, and after checking
that none of the possible roots are valid solutions to the polynomial, we conclude that the number
is not rational.

1. x =
√
3, so x2 − 3 = 0, the only possible rational roots of this polynomial are [±3,±1], and

we can verify that neither satisfy the given polynomial, thus x must be irrational.

2. x =
√
5, so x2 − 5 = 0, the only possible rational roots of this polynomial are [±5,±1], and

we can verify that neither satisfy the given polynomial, thus x must be irrational.

3. x =
√
7, so x2 − 7 = 0, the only possible rational roots of this polynomial are [±7,±1], and

we can verify that neither satisfy the given polynomial, thus x must be irrational.

4. x =
√
24, so x2 − 24 = 0, the only possible rational roots of this polynomial are

[±24,±12,±8,±6,±4,±3,±2,±1], and we can verify that neither satisfy the given
polynomial, thus x must be irrational.

5. x =
√
31, so x2 − 31 = 0, the only possible rational roots of this polynomial are [±31,±1],

and we can verify that neither satisfy the given polynomial, thus x must be irrational.
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We want to show that each of the following numbers is irrational. We use the rational roots theorem
to classify all possible rational roots for each numbers’ corresponding polynomial, and after checking
that none of the possible roots are valid solutions to the polynomial, we conclude that the number
is not rational.

1. x = 3
√
2, so x3 − 2 = 0, the only possible rational roots of this polynomial are [±2,±1], and

we can verify that neither satisfy the given polynomial, thus x must be irrational.

2. x = 7
√
5, so x7 − 5 = 0, the only possible rational roots of this polynomial are [±5,±1], and

we can verify that neither satisfy the given polynomial, thus x must be irrational.

3. x = 4
√
13, so x4−13 = 0, the only possible rational roots of this polynomial are [±14,±7,±2± 1],

and we can verify that neither satisfy the given polynomial, thus x must be irrational.
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1. We want to show that
√
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√
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x = 1 satisfies this equation, so we conclude that
√
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√
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√
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√
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x = 2 satisfies this equation, so we conclude that
√
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2 = 2
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a.
|a+ b+ c| ≤ |a+ b|+ |c| ≤ |a|+ |b|+ |c|

b. The base case is trivial, |x1| ≤ |x1|. Assume for fixed n that

|x1 + x2 + ...+ xn| ≤ |x1|+ |x2|+ ...+ |xn|

Then we have that

|x1 + x2 + ...+ xn + xn+1| ≤ |x1 + x2 + ...+ xn|+ |xn+1|

by the triangle inequality. Then we apply the inductive hypothesis to see that

|x1 + x2 + ...+ xn|+ |xn+1| ≤ |x1|+ |x2|+ ...+ |xn|+ |xn+1|

We combine the above inequalities to conclude that

|x1 + x2 + ...+ xn + xn+1| ≤ |x1|+ |x2|+ ...+ |xn|+ |xn+1|
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We’d like to show that for any a, b ∈ R, given that a < b, there are infinitely many rationals r such
that a < r < b. The denseness of Q gives us one such r such that a < r < b (4.7 in Ross). Set
s0 = r. Recursively define sn+1 as a rational number between a and sn (again, given by denseness
of Q). We continue this infinitely.

One can show via induction that every si is greater than a and less than b, but it’s kind of obvious
by construction. Intuitively, we’re finding a rational number between a and b, and then finding a
smaller rational number greater than a, and then finding an even smaller one, and so on.
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a. We want to show that sup(A + B) = supA + supB. We know that supA + supB is an upper
bound for A+B, because we can add the following inequalities

∀x ∈ A, x ≤ supA

∀y ∈ B, y ≤ supB

Now we have to show that supA + supB is the least upper bound. Assume for contradiction
that it’s not the least upper bound. Then:

supA+ supB − sup(A+B) > 0

Let’s call this quantity d = supA+ supB − sup(A+ B). We know that since supA and supB
are least upper bounds, then supA− d

2 is not an upper bound of A, and similarly supB − d
2 is

not an upper bound of B. This means there is an a ∈ A, and a b ∈ B such that:

a > supA− d

2

b > supB − d

2

If we add these inequalities together, we get that

a+ b > supA+ supB − d

and after substituting d, we get that

a+ b > supA+ supB − (supA+ supB − sup(A+B) = sup(A+B)

which is a contradiction, because we see that an element of A+B is larger than the supremum
of the set. Therefore supA+ supB must be the least upper bound, as desired.

b. We can use a very similar proof to show that inf(A + B) = inf A + inf B. Again, we know
that inf A + inf B is a lower bound by adding together the inequalities from the definition of
infimum. Again suppose for contradiction that the greatest lower bound of A+B is larger than
inf A+ inf B. Set:

d = inf(A+B)− inf A− inf B

We use the fact that inf A + d
2 is not a lower bound of A, and inf b + d

2 isn’t a lower bound to
B to again see that for some a ∈ A, b ∈ B:

a+ b < inf A+ inf B + d = inf(A+B)

which is a contradiction because an element of A+B is smaller than it’s greatest lower bound.
Therefore inf A+ inf B = inf(A+B).
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a.
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