Ross 9.9

Suppose there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$
(a.) Prove that if $\lim s_{n}=+\infty$, then $\lim t_{n}=+\infty$
(b.) Prove that if $\lim t_{n}=-\infty$, then $\lim s_{n}=-\infty$
(c.) Prove that if $\lim s_{n}$ and $\lim t_{n}$ exists, then $\lim s_{n} \leq \lim t_{n}$
(a.) Suppose there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$.

Since $\lim s_{n}=+\infty$, for each $M>0$, there is a number N that for $n>N, s_{n}>M$. Let $N^{\prime}=\max \left\{N, N_{0}\right\}$, then for all $n>N^{\prime}, t_{n} \geq s_{n}>M$. So, $\lim t_{n}=+\infty$.
(b.) Suppose there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$.

Since $\lim t_{n}=-\infty$, for each $M<0$, there is a number N that for $n>N, t_{n}<M$.
Let $N^{\prime}=\max \left\{N, N_{0}\right\}$, then for all $n>N^{\prime}, s_{n} \leq t_{n}<M$.
So, $\lim s_{n}=-\infty$.
(c.) Suppose there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$.

Also suppose that $\lim s_{n}$ and $\lim t_{n}$ exist.
Then, $t_{n}-s_{n} \geq 0$ for all $n>N_{0}$.
This implies that $\lim t_{n}-\lim s_{n} \geq 0$ for all $n>N_{0}$.
Which implies that $\lim t_{n} \geq \lim s_{n}$

Ross 9.15
Show $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$ for all $a \in \mathbb{R}$.
Note that as $n \rightarrow \infty$, n will eventually larger than a

In fact, after $n=a+1$, every n will larger than a
Thus, making $\frac{a}{n}$ become smaller and smaller and eventually goes to zero.

Ross 10.7

Let S be bounded nonempty subset of \mathbb{R} such that $\sup S$ is not in S. Prove there is a sequence $\left(s_{n}\right)$ of points in S such that $\operatorname{lims}_{n}=\operatorname{supS}$
Let S be bounded nonempty subset of \mathbb{R} such that sup $S \notin S$.
By definition, for all $\epsilon>0$, there exists $s \in S$ such that $s>\sup S-\epsilon$.
Note that since $\frac{1}{n}>0$ for all $n>0$, we can let $\epsilon=\frac{1}{n}$ and get $s>\sup S-\frac{1}{n}$
Also note that $\sup S>s$ for all $s \in S$ in this case.
Then, we get the relation: $\sup S-\frac{1}{n}<s<\sup S$ for all $s \in S$.
From above, we can see that $\left(s_{n}\right)$ is bounded by some sequences, says $\left(a_{n}\right)=\sup S$ and $\left(b_{n}\right)=\sup S-\frac{1}{n}$.

Therefore, there is a sequence $\left(s_{n}\right)$ of points in S such that $\lim s_{n}=\sup S$.

Let $\left(s_{n}\right)$ be an increasing sequence of positive numbers and define $\sigma_{n}=\frac{1}{n}\left(s_{1}+s_{2}+\cdots+s_{n}\right)$. Prove $\left(\sigma_{n}\right)$ is an increasing sequence.
Since (s_{n}) is an increasing sequence of positive numbers, the smallest possible sum of them is $1+2+3+\cdots+n=\sum_{i=1}^{n} s_{i}$.

Any other possible sequence will only make $\left(s_{1}+s_{2}+\cdots+s_{n}\right)$ larger.
So, as long as $\frac{1}{n} \sum_{i=1}^{n} s_{i}$ is increasing, $\left(\sigma_{n}\right)$ is increasing.
$\frac{\sum_{i=1}^{n} s_{i}}{n}=\frac{\left(\frac{1}{2} n(n+1)\right)}{n}=\frac{n+1}{2} \geq 1$ since $n \geq 1$.
Since the ration is greater than or equal to 1 with equality holds when $n=1$, the sequence does increasing.

Therefore, $\left(\sigma_{n}\right)$ is an increasing sequence.

Let $s_{1}=1$ and $s_{n+1}=\left(\frac{n}{n+1}\right) s_{n}^{2}$ for $n \geq 1$.
(a.) Find s_{2}, s_{3} and $s_{4} \cdot$ w
(b.) Show $\lim s_{n}$ exists.
(c.) Prove $\lim s_{n}=0$.
(a.) $s_{2}=\left(\frac{1}{2}\right) \cdot 1^{2}=\frac{1}{2}$
$s_{3}=\left(\frac{2}{3}\right) \cdot\left(\frac{1}{2}\right)^{2}=\frac{1}{6}$
$s_{4}=\left(\frac{3}{4}\right) \cdot\left(\frac{1}{6}\right)^{2}=\frac{1}{48}$
(b.) Note that $\left(\frac{n}{n+1}\right) \geq 0$ and therefore, $s_{n} \geq 0$

Furthermore, $\left(\frac{n}{n+1}\right)<1$ since $n+1>n$ for all $n \geq 1$ and therefore $s_{n}<1$
So we have: $0 \leq\left(\frac{n}{n+1}\right) s_{n}^{2}<1$ and $\left(\frac{n}{n+1}\right) s_{n}^{2}$ is decreasing.
Therefore, $\lim s_{n}$ exists.
(c.) From above we can see that both $\left(\frac{n}{n+1}\right)$ and s_{n}^{2} is getting closer and closer to zero.

Therefore, $\lim s_{n} \rightarrow 0$.

Squeeze Lemma
Let a_{n}, b_{n}, c_{n} be three sequences such that $a_{n} \leq b_{n} \leq c_{n}$. If $L=\lim a_{n}=\lim c_{n}$, then $\lim b_{n}=L$.
Let a_{n}, b_{n}, c_{n} be three sequences such that $a_{n} \leq b_{n} \leq c_{n}$.
Let $L=\lim a_{n}=\lim c_{n}$.
Then for all $\epsilon>0$, there exists an N_{a} such that for all $n>N_{a},\left|a_{n}-L\right|<\epsilon$.
That is, $L-\epsilon<a<L+\epsilon$.

Similarly, we can have $L-\epsilon<c<L+\epsilon$ with some N_{c}
Let $N_{b}=\max \left\{N_{a}, N_{c}\right\}$

Then we have: $L-\epsilon<a_{n} \leq b_{n} \leq c_{n}<L+\epsilon$

Rewrite above and we get: $L-\epsilon<b_{n}<L+\epsilon$
This implies that $\left|b_{n}-L\right|<\epsilon$.
Therefore, $\lim b_{n}=L$.

