Ross 9.9

Suppose there exists N_0 such that $s_n \le t_n$ for all $n > N_0$ (a.) Prove that if $\lim s_n = +\infty$, then $\lim t_n = +\infty$ (b.) Prove that if $\lim t_n = -\infty$, then $\lim s_n = -\infty$

(c.) Prove that if $\lim s_n$ and $\lim t_n$ exists, then $\lim s_n \le \lim t_n$

(a.) Suppose there exists N_0 such that $s_n \leq t_n$ for all $n > N_0$. Since $\lim s_n = +\infty$, for each M > 0, there is a number N that for n > N, $s_n > M$. Let $N' = \max \{N, N_0\}$, then for all n > N', $t_n \geq s_n > M$. So, $\lim t_n = +\infty$.

- (b.) Suppose there exists N_0 such that $s_n \le t_n$ for all $n > N_0$. Since $\lim t_n = -\infty$, for each M < 0, there is a number N that for n > N, $t_n < M$. Let $N' = \max\{N, N_0\}$, then for all n > N', $s_n \le t_n < M$. So, $\lim s_n = -\infty$.
- (c.) Suppose there exists N_0 such that $s_n \leq t_n$ for all $n > N_0$. Also suppose that $\lim s_n$ and $\lim t_n$ exist. Then, $t_n - s_n \geq 0$ for all $n > N_0$. This implies that $\lim t_n - \lim s_n \geq 0$ for all $n > N_0$. Which implies that $\lim t_n \geq \lim s_n$

Ross 9.15

 $\frac{\text{Show } \lim_{n \to \infty} \frac{a^n}{n!} = 0 \text{ for all } a \in \mathbb{R}.}{\text{Note that as } n \to \infty, n \text{ will eventually larger than } a}$

In fact, after n = a + 1, every n will larger than a

Thus, making $\frac{a}{n}$ become smaller and smaller and eventually goes to zero.

Ross 10.7

Let S be bounded nonempty subset of \mathbb{R} such that supS is not in S. Prove there is a sequence (s_n) of points in S such that $lims_n = supS$

Let S be bounded nonempty subset of \mathbb{R} such that $supS \notin S$.

By definition, for all $\epsilon > 0$, there exists $s \in S$ such that $s > supS - \epsilon$.

Note that since $\frac{1}{n} > 0$ for all n > 0, we can let $\epsilon = \frac{1}{n}$ and get $s > supS - \frac{1}{n}$

Also note that supS > s for all $s \in S$ in this case.

Then, we get the relation: $supS - \frac{1}{n} < s < supS$ for all $s \in S$.

From above, we can see that (s_n) is bounded by some sequences, says $(a_n) = supS$ and $(b_n) = supS - \frac{1}{n}$.

Therefore, there is a sequence (s_n) of points in *S* such that $\lim s_n = \sup S$.

Ross 10.8

Let (s_n) be an increasing sequence of positive numbers and define $\sigma_n = \frac{1}{n}(s_1 + s_2 + \dots + s_n)$. Prove (σ_n) is an increasing sequence.

Since (s_n) is an increasing sequence of positive numbers, the smallest possible sum of them is $1 + 2 + 3 + \dots + n = \sum_{i=1}^{n} s_i$.

Any other possible sequence will only make $(s_1 + s_2 + \dots + s_n)$ larger.

So, as long as $\frac{1}{n} \sum_{i=1}^{n} s_i$ is increasing, (σ_n) is increasing.

$$\frac{\sum_{i=1}^{n} s_i}{n} = \frac{\left(\frac{1}{2}n(n+1)\right)}{n} = \frac{n+1}{2} \ge 1 \text{ since } n \ge 1.$$

Since the ration is greater than or equal to 1 with equality holds when n = 1, the sequence does increasing.

Therefore, (σ_n) is an increasing sequence.

Ross 10.9

Let $s_1 = 1$ and $s_{n+1} = \left(\frac{n}{n+1}\right) s_n^2$ for $n \ge 1$. (a.) Find s_2, s_3 and $s_4.w$ (b.) Show lim s_n exists. (c.) Prove lim $s_n = 0$. (a.) $s_2 = \left(\frac{1}{2}\right) \cdot 1^2 = \frac{1}{2}$ $s_3 = \left(\frac{2}{3}\right) \cdot \left(\frac{1}{2}\right)^2 = \frac{1}{6}$ $s_4 = \left(\frac{3}{4}\right) \cdot \left(\frac{1}{6}\right)^2 = \frac{1}{48}$

(b.) Note that $\left(\frac{n}{n+1}\right) \ge 0$ and therefore, $s_n \ge 0$

Furthermore, $\left(\frac{n}{n+1}\right) < 1$ since n+1 > n for all $n \ge 1$ and therefore $s_n < 1$

So we have: $0 \le \left(\frac{n}{n+1}\right)s_n^2 < 1$ and $\left(\frac{n}{n+1}\right)s_n^2$ is decreasing.

Therefore, $\lim s_n$ exists.

(c.) From above we can see that both $\left(\frac{n}{n+1}\right)$ and s_n^2 is getting closer and closer to zero.

Therefore, $\lim s_n \to 0$.

Squeeze Lemma

Let a_n, b_n, c_n be three sequences such that $a_n \le b_n \le c_n$. If $L = \lim a_n = \lim c_n$, then $\lim b_n = L$.

Let a_n , b_n , c_n be three sequences such that $a_n \leq b_n \leq c_n$.

Let $L = \lim a_n = \lim c_n$.

Then for all $\epsilon > 0$, there exists an N_a such that for all $n > N_a$, $|a_n - L| < \epsilon$.

That is, $L - \epsilon < a < L + \epsilon$.

Similarly, we can have $L - \epsilon < c < L + \epsilon$ with some N_c

Let $N_b = \max\{N_a, N_c\}$

Then we have: $L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$

Rewrite above and we get: $L - \epsilon < b_n < L + \epsilon$

This implies that $|b_n - L| < \epsilon$.

Therefore, $\lim b_n = L$.