Problem 1

Ross 33.4

Solution

Give an example of a function f on $[0,1]$ that is not integrable for which $|f|$ is integrable.
Let f be the following: on $[a, b] \mathrm{f}= \begin{cases}1 & x \in[0,1] / \mathbb{Q} \\ -1 & x \in[0,1] \cap \mathbb{Q}\end{cases}$
f is not integrable:
for partition: $\mathrm{P}=\left\{t_{0}, \ldots t_{n}\right\}$
$U(f, P)=\sum_{i=0}^{n}$
$\sup \left(f(x): x \in\left[t_{i}, t_{i+1}\right]\right) *\left(t_{i+1}-t_{i}\right)=1$
$L(f, P)=\sum_{i=0}^{n} \inf \left(f(x): x \in\left[t_{i}, t_{i+1}\right]\right) *\left(t_{i+1}-t_{i}\right)=0$
Observe that $|f|=1 \forall x \in[a, b]$ which is integrable
$\sup \left(1: x \in\left[t_{i}, t_{i+1}\right]\right)=1=\inf \left(1: x \in\left[t_{i}, t_{i+1}\right]\right)$
$\left|\sup \left(f(x): x \in\left[t_{i}, t_{i+1}\right]\right)\right|=\inf \left(f(x): x \in\left[t_{i}, t_{i+1}\right]\right) \forall x \in[0,1]$

Problem 2

Ross 33.7

Solution

Let f be a bounded function on $[\mathrm{a}, \mathrm{b}]$, so that there exists $B>0$ such that $|f(x)| \leq B$ for all $x \in[a, b]$.
a) Show $U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B[U(f, P)-L(f, P)]$ for all partitions P of $[\mathrm{a}, \mathrm{b}]$. Hint: $f(x)^{2}-f(y)^{2}=$ $[f(x)+f(y)] \cdot[f(x)-f(y)]$.
$U\left(f^{2}, P\right)=\sum_{i=0}^{n} \sup \left(f(x)^{2}: x \in\left[t_{i}, t_{i+1}\right]\right) *\left(t_{i+1}-t_{i}\right)$
$L\left(f^{2}, P\right)=\sum_{i=0}^{n} \inf \left(f(x)^{2}: x \in\left[t_{i}, t_{i+1}\right]\right) *\left(t_{i+1}-t_{i}\right)$
$U\left(f^{2}, P\right)-L\left(f^{2}, P\right)=\sum_{i=0}^{n}\left[\sup \left(f(x)^{2}: x \in\left[t_{i}, t_{i+1}\right]\right)-\inf \left(f(x)^{2}: x \in\left[t_{i}, t_{i+1}\right]\right)\right] *\left(t_{i+1}-t_{i}\right)$
We want to thus show that $\left[\sup \left(f(x)^{2}: x \in\left[t_{i}, t_{i+1}\right]\right)-\inf \left(f(x)^{2}: x \in\left[t_{i}, t_{i+1}\right]\right)\right] \leq 2 B(\sup (f(x): x \in$ $\left.\left.\left[t_{i}, t_{i+1}\right]\right)-\inf \left(f(x): x \in\left[t_{i}, t_{i+1}\right]\right)\right)$
from hint:

$$
\left|f(x)^{2}-f(y)^{2}\right|=[f(x)+f(y)] \cdot[f(x)-f(y)]
$$

on any interval $[a, b]$,
$\left|f(x)^{2}-f(y)^{2}\right|=|[f(x)+f(y)] \cdot[f(x)-f(y)]| \leq|[f(x)+f(y)]| \cdot|[f(x)-f(y)]| \leq 2 B \cdot|[f(x)-f(y)]|$
$U\left(f^{2}, P\right)-L\left(f^{2}, P\right)=\sum_{i=0}^{n}\left[\sup \left(f(x)^{2}: x \in\left[t_{i}, t_{i+1}\right]\right)-\inf \left(f(x)^{2}: x \in\left[t_{i}, t_{i+1}\right]\right)\right] *\left(t_{i+1}-t_{i}\right)$
$\leq \sum_{i=0}^{n} 2 B\left[\sup \left(f(x): x \in\left[t_{i}, t_{i+1}\right]\right)-\inf \left(f(x): x \in\left[t_{i}, t_{i+1}\right]\right)\right] *\left(t_{i+1}-t_{i}\right)=2 B(U(f, P)-L(f, P))$
b) Show that if f is integrable on $[\mathrm{a}, \mathrm{b}]$, then f^{2} also is integrable on $[\mathrm{a}, \mathrm{b}]$.

Want to show: $U(f, P)-L(f, P) \leq \epsilon_{0}$ implies
$U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq \epsilon$
let $\epsilon_{0}=\frac{\epsilon}{2 B}$
We have already show that:
$U\left(f^{2}, P\right)-L\left(f^{2}, P\right) \leq 2 B(U(f, P)-L(f, P)) \leq \epsilon$

Problem 3

Ross 33.13
Solution $\int_{a}^{b} f=\int_{a}^{b} g$
by intermediate value theorem, we can show that there exists a $x \in[a, b]$ s.t. $f(x)=g(x)$
Since $\int_{a}^{b} f-g=0$, there exists a $x \in[a, b]$ s.t.
$f g=\frac{1}{b-a} \int_{a}^{b} f-g=0$

Problem 4

Ross 35.4

Solution $F(t)=\sin (t)$ for $t \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
a) $\int_{0}^{\frac{\pi}{2}} x d F(x)$
by integration by parts(since both x and $\sin (x)$ are increasing on $\left[0, \frac{\pi}{2}\right]: \int_{a}^{b} F_{1} d F_{2}=F_{1}(b) F_{2}(b)-$ $F_{1}(a) F_{2}(a)-\int_{a}^{b} F_{2} d F_{1}$.
$\int_{0}^{\frac{\pi}{2}} x d F(x)=\frac{\pi}{2} * \sin \left(\frac{\pi}{2}\right)-0-\int_{0}^{\frac{\pi}{2}} \sin (x) d x=\frac{\pi}{2}-0-[0-1]=\frac{\pi}{2}+1$
b) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x d F(x)=\frac{\pi}{2} * \sin \left(\frac{\pi}{2}\right)+\frac{\pi}{2} \sin \left(-\frac{\pi}{2}\right)-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin (x) d x=\frac{\pi}{2}+\frac{\pi}{2}-[0-0]=1$

Problem 4

Ross 35.9(a)

Solution Show $\int_{a}^{b} f d F=f(x)[F(b)-F(a)]$ for some $x \in[a, b]$
Inspiration by peers:
We can bound the intergral by $U(f, F, P)$ and $L(f, F, p)$
$U(f, F, P)=\sum_{i=1}^{n} \sup \left(f,\left[t_{i}, t_{i-1}\right]\right)\left(F\left(t_{i}\right)-F\left(t_{i-1}\right)\right) \leq \sup (f,[a, b])(F(b)-F(a))$
$L(f, F, P)=\sum_{i=1}^{n} \inf \left(f,\left[t_{i}, t_{i-1}\right]\right)\left(F\left(t_{i}\right)-F\left(t_{i-1}\right)\right) \geq \inf (f,[a, b])(F(b)-F(a))$
the integral itself lies between the L and U
$\inf (f,[a, b])(F(b)-F(a)) \leq \int_{a}^{b} f d F \leq \sup (f,[a, b])(F(b)-F(a))$
Divide by $(F(b)-F(a))$, and wlog assume $y>x$
$f(x)=\inf (f,[a, b]) \leq \frac{1}{(F(b)-F(a))} \int_{a}^{b} f d F \leq \sup (f,[a, b])=f(y)$
By the Intermediate Value Theorem, since f is continuous there must exist a point c between $[\mathrm{x}, \mathrm{y}]$
$f(c)=\frac{1}{(F(b)-F(a))} \int_{a}^{b} f d F$

