Problem 1

34.2

Solution

a) $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t$

Let $F(x)=\int_{0}^{x} e^{t^{2}} d t$ we can substitiute the limit definition.
$F(0)=0$
$\lim _{x \rightarrow 0} \frac{F(x)}{x}=\lim _{x \rightarrow 0} \frac{F(x)-F(0)}{x-0}=F^{\prime}(0)$
By the fundamental theorem of calculus, the derivative of the integral is just the following. $F^{\prime}(0)=f(0)=e^{\left(0^{2}\right)}=1$
b) $\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+x} e^{t^{2}} d t$

Same principle, but replace approaching 0 by 3,

$$
\begin{aligned}
& F(x)=\int_{3}^{x} e^{t^{2}} d t, F(3)=0 \\
& \lim _{h \rightarrow 0} \frac{F(3+h)}{h}=\lim _{h \rightarrow 0} \frac{F(3+h)-F(3)}{h}=F^{\prime}(3) \\
& F^{\prime}(3)=f(3)=e^{3^{2}}=e^{9}
\end{aligned}
$$

Problem 2

34.5

Solution $F(x)=\int_{x-1}^{x+1} f(t) d t$
Given: f is continuous.
Prove: F is differentiable.
$\lim _{x \rightarrow 0}$
Split F into two parts relative to a constant on $c \in[x-1, x+1]$
$F(x)=\int_{x-1}^{c} f(t) d t+\int_{c}^{x+1} f(t) d t$
By the fundamental theorem of calculus, F is continuous,
$F(x)=\int_{x-1}^{c} f(t) d t+\int_{c}^{x+1} f(t) d t$
since f is continuous at c , we can show that the deriviative exists and of the following form:
$F^{\prime}(x)=f(x+1)-f(x-1)$

Problem 3

34.7

Solution $\int_{0}^{1} x \sqrt{1-x^{2}} d x$
let $u=1-x^{2}$
$d u=-2 x d x$
$=\int_{u(0)}^{u(1)} \frac{-1}{2} \sqrt{u} d x$
We can easily take the antiderivative of \sqrt{u}
$=\left.\frac{-1}{2} \frac{2}{3} u^{\frac{3}{2}}\right|_{1} ^{0}$
$=0-\frac{-1}{2} \frac{2}{3} 1=\frac{1}{3}$

