
Minh Phan Homework 1 Math 104

Problem 1.10

Prove (2n+ 1) + (2n+ 3) + (2n+ 5) + ...+ (4n− 1) = 3n2 for all positive integers n.

Solution

Rewrite: (2n+ 1) + (2n+ 3) + (2n+ 5) + ...+ (4n− 1) =
∑n

i=1(2n− 1 + 2i)

Base case: n = 1

2(1) + 1 = 3(1)2

Inductive hypothesis

Start by splitting the sum into terms 1-n and n+1∑n+1
i=1 (2(n+ 1)− 1 + 2i) =

∑n+1
i=1 (2n− 1 + 2i+ 2) = 2(n+ 1) +

∑n+1
i=1 (2n− 1 + 2i)

= 2(n+ 1) + (2n− 1 + 2(n+ 1)) +
∑n

i=1(2n− 1 + 2i)

Substitute what we have proved for the n case:

= 2(n+ 1) + (2n− 1 + 2(n+ 1)) + 3n2

Simplify

= 3n2 + 6n+ 3 = 3(n2 + 2n+ 1) = 3(n+ 1)2
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Problem 1.12

a) Verify the binomial theorem for n = 1, 2, and 3.

b) Show for k = 1, 2, ... , n.
(
n
k

)
+
(

n
k−1

)
=

(
n+1
k

)
c) Prove the binomial theorem using mathematical induction and part (b).

Solution

a) n = 1

(a+ b) =
(
1
0

)
a+

(
1
1

)
b = a+ b

n = 2

(a+ b)2 =
(
2
0

)
a2 +

(
2
1

)
ab+

(
2
2

)
b2 = a2 + 2ab+ b2

n = 3

(a+ b)3 =
(
3
0

)
a3 +

(
3
1

)
a2b+

(
3
2

)
ab2 +

(
3
3

)
b3 = a3 + 3a2b+ 3ab2 + b2

b) Expand:(
n
k

)
+
(

n
k−1

)
= n!

k!(n−k)! +
n!

(k−1)!(n−k+1)!

shift factorials

= n!
k∗(k−1)!(n−k)! +

n!
(k−1)!(n−k+1)∗(n−k)!

multiply by 1 to clean up denominators

= n!(n−k+1)
k∗(k−1)!(n−k+1)∗(n−k)! +

n!∗k
k∗(k−1)!(n−k+1)∗(n−k)!

= n!(n−k+1+k)
k∗(k−1)!(n−k+1)∗(n−k)! =

(n+1)!
k!(n−k+1)! =

(
n+1
k

)
c) Prove the binomial theorem using mathematical induction and part (b).

Base case:

in part a), we proved for some cases of n.

Inductive hypothesis:

(a+ b)n = an +
∑n−1

i=1

(
n
i

)
an−i ∗ bi + bn

Inductive step:

We want to show (a+ b)n+1 = an+1 +
∑n

i=1

(
n+1
i

)
an+1−ibi + bn+1

(a+ b)n+1 = (a+ b) ∗ (a+ b)n

Distributing:

= a(an +
∑n−1

i=1

(
n
i

)
an−i ∗ bi + bn) + b(an +

∑n−1
i=1

(
n
i

)
an−i ∗ bi + bn)
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= an+1 +
∑n−1

i=1

(
n
i

)
an+1−i ∗ bi + abn + ban +

∑n−1
i=1

(
n
i

)
an−i ∗ bi+1 + bn+1

= an+1 +
∑n

i=1

(
n
i

)
an+1−i ∗ bi +

∑n−1
i=0

(
n
i

)
an−i ∗ bi+1 + bn+1

Recognise that we can alter the index slightly to get the following:∑n−1
i=0

(
n
i

)
an−i ∗ bi+1 =

∑n
i=1

(
n

i−1

)
an+1−i ∗ bi

Substituting:

= an+1 +
∑n

i=1

(
n
i

)
an+1−i ∗ bi +

∑n
i=1

(
n

i−1

)
an+1−i ∗ bi + bn+1

combining under one sum:

= an+1 +
∑n

i=1

(
n
i

)
an+1−i ∗ bi +

(
n

i−1

)
an+1−i ∗ bi + bn+1

factoring:

= an+1 +
∑n

i=1(
(
n
i

)
+
(

n
i−1

)
)an+1−ibi + bn+1

Thus, we have shown the inductive step holds true.

= an+1 +
∑n

i=1

(
n+1
i

)
an+1−ibi + bn+1 = (a+ b)n+1
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Problem 2.1

Show
√
3,
√
5,
√
7,
√
24,

√
31 are irrational

Solution

1.
√
3

x2 − 3 = 0

c2 = 1, c0 = 3

The only possible rational roots are ±1, ±3, neither of these solve the equation.

2.
√
5

x2 − 3 = 0

c2 = 1, c0 = 5

The only possible rational roots are ±1, ±5, neither of these solve the equation.

3.
√
7

x2 − 3 = 0

c2 = 1, c0 = 7

The only possible rational roots are ±1, ±7, neither of these solve the equation.

4.
√
24

x2 − 3 = 0

c2 = 1, c0 = 24

The only possible rational roots are ±1,±2,±3,±4,±6,±8,±12,±24, none of these solve the equation.

5.
√
31

x2 − 3 = 0

c2 = 1, c0 = 31

The only possible rational roots are ±1, ±31, neither of these solve the equation.
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Problem 2.2

Show 3
√
2, 7

√
5, 4

√
13 are irrational

Solution

1. 3
√
2

x3 − 2 = 0

c2 = 1, c0 = 2

The only possible rational roots are ±1, ±2, neither of these solve the equation.

2. 7
√
5

x7 − 5 = 0

c2 = 1, c0 = 5

The only possible rational roots are ±1, ±5, neither of these solve the equation.

3. 4
√
13

x4 − 13 = 0

c2 = 1, c0 = 13

The only possible rational roots are ±1, ±13, neither of these solve the equation.
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Problem 2.7

Show
√
4 + 2

√
3−

√
3,
√
6 + 4

√
2−

√
2 are rational

Solution

1.
√
4 + 2

√
3−

√
3 = x

(x+
√
3)2 = 4 + 2

√
3

= x2 + 2
√
3x+ 3 = 4 + 2

√
3

x = 1 satisfies the above equality, and 1 is rational and thus
√
4 + 2

√
3−

√
3 = 1 is rational

2.
√
6 + 4

√
2−

√
2 = x

(x+
√
2)2 = 6 + 4

√
2

x2 + 2
√
2x+ 2 = 6 + 4

√
2

x = 2 satisfies the above equality, and 2 is rational and thus
√
6 + 4

√
2−

√
2 = 2 is rational.
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Problem 3.6

Prove |a+ b+ c| ≤ |a|+ |b|+ |c| for all a, b, c ∈ R

and

|a1 + a2 + ...+ an| ≤ |a1|+ |a2|+ ...+ |an|

Solution

a) The triangle inequality states:

|a+ b| ≤ |a|+ |b| for all a, b

letting b′ = b+ c, which is still a real number.

|a+ b+ c| = |a+ b′| ≤ |a|+ |b′| = |a|+ |b+ c|

We can apply the triangle inequality again to the right since b and c are still real numbers.

|b+ c| ≤ |b|+ |c|

Thus,

|a+ b+ c| ≤ |a|+ |b+ c| ≤ |a|+ |b|+ |c|

b) the base case (n = 3) is prove in part a). We simple let a1 = a, a2 = b, a3 = c

Inductive hypothesis: |a1 + a2 + ...+ an| ≤ |a1|+ |a2|+ ...+ |an|

Inductive step:

|a1 + a2 + ...an + an+1| ≤ |a1|+ |a2|+ ...|an|+ |an+1|

We can combine an + an+1 = a′

since a′ is still a real number, we the following still holds true.

|a1 + a2 + ...a′| ≤ |a1|+ |a2|+ ...|a′|

and from the triangle inequality,

|a′| = |an + an+1| ≤ |an|+ |an+1|

Thus, the following must also be true:

|a1|+ |a2|+ ...|a′| ≤ |a1|+ |a2|+ ...|an|+ |an+1|

Finally, by the ordering of the inequalities.

|a1 + a2 + ...an + an+1| ≤ |a1|+ |a2|+ ...|an|+ |an+1|

7



Minh Phan Homework 1 Math 104

Problem 4.11

a < b ∈ R, show there are infinitely many rationals between a and b.

Solution Denseness: If a, b ∈ R and a ¡ b, then there is a rational r ∈ Q such that a < r < b.

We can proceed with induction.

Base case(n = 1): by the denseness property, we know that at least 1 rational number exists between a

and b.

Inductive hypothesis: there are n distinct rational numbers (denoted by r1...rn) between a and b. rn <

r1...rn−1 .

Inductive step: We know that rn is also a real number since Q is a subset of R.

We can now use the denseness property of R to prove the existence of another rational number

Denseness: a < rn+1 < rn

by ordering of the inequalities, a < rn+1 < b

We can continue for as long as we have natural numbers n, so there are an infinite number of rational

numbers between a and b.
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Problem 4.14

Prove sup(A+B) = sup(A) + sup(B)

and

inf(A + B) = inf A + inf B.

Solution

a) By construction sup(A+B) contains all the elements a + b.

We can construct an upper bound for A:

sup(A+B) ≥ a+ b

sup(A+B)− b ≥ a,∀a, b ∈ A,B

This is true because A+B contains all the sums a+ b and uses definition of sup,

Thus, sup(A) ≤ sup(A+B)− b,∀b ∈ B

Now, we can use the hint to show

sup(A+B)− sup(A) ≥ sup(A+B)− sup(A+B) + b = b,∀b ∈ B

sup(A+B)− sup(A) ≥ b,∀b ∈ B

sup(A+B) ≥ sup(A) + b,∀b ∈ B

Together, since sub(B) ≥ b,∀b ∈ B

sup(A+B) = sup(A) + sup(B)

b)

We can construct a lower bound for A:

inf(A+B)− b ≤ a,∀a, b ∈ A,B

inf(A+B) ≤ a+ b,∀a, b ∈ A,B

This equality is true because A+B contains all the sums a+ b and uses def of inf,

Thus, inf(A+B)− b ≤ inf(A),∀b ∈ B

Now, like above we can use the above relationship to show the following relationship between inf(A) and

inf(A+B)

inf(A+B)− inf(A) ≤ inf(A+B)− inf(A+B)− b = b,∀b ∈ B

inf(A+B)− inf(A) ≤ b,∀b ∈ B

inf(A+B) ≤ inf(A) + b,∀b ∈ B

Together, since inf(B) ≤ b,∀b ∈ B

inf(A+B) = inf(A) + inf(B)
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Problem 7.5

limits

Solution

1. lim
√
n2 + 1− n

We will ’irrationalize the denominator’

(
√
n2 + 1− n)

√
n2+1+n√
n2+1+n

= n2+1−n2
√
n2+1+n

= 1√
n2+1+n

Since there is a constant term on top and a term that increases as a function of n on the bottom,

lim 1√
n2+1+n

= 0

2. lim
√
n2 + n− n

(
√
n2 + n− n)

√
n2+n+n√
n2+n+n

= n2+n−n2
√
n2+n+n

= n√
n2+n+n

= 1√
n2+n
n +1

Taking the limit of the only term with n,

lim
√
n2+n
n = lim

n
√

1+ 1
n

n = lim
√

1 + 1
n = 1

Thus, after substituting back in...

lim
√
n2 + n− n = 1

2

3. lim
√
4n2 + n− 2n

(
√
4n2 + n− 2n)

√
4n2+n+2n√
4n2+n+2n

= 4n2+n−4n2
√
4n2+n+2n

= n√
4n2+n+2n

= 1√
4n2+n

n +2

Taking the limit of the only term with n,

lim
√
4n2+n
n = lim

2n
√

1+ 1
4n

n = 2 ∗ lim
√
1 + 1

4n = 2 ∗ 1

Thus, after substituting back in...

lim
√
4n2 + n− 2n = 1

4

10


