Problem 1.10

Prove $(2 n+1)+(2 n+3)+(2 n+5)+\ldots+(4 n-1)=3 n^{2}$ for all positive integers n.

Solution

Rewrite: $(2 n+1)+(2 n+3)+(2 n+5)+\ldots+(4 n-1)=\sum_{i=1}^{n}(2 n-1+2 i)$
Base case: $\mathrm{n}=1$
$2(1)+1=3(1)^{2}$
Inductive hypothesis
Start by splitting the sum into terms 1-n and $n+1$
$\sum_{i=1}^{n+1}(2(n+1)-1+2 i)=\sum_{i=1}^{n+1}(2 n-1+2 i+2)=2(n+1)+\sum_{i=1}^{n+1}(2 n-1+2 i)$
$=2(n+1)+(2 n-1+2(n+1))+\sum_{i=1}^{n}(2 n-1+2 i)$
Substitute what we have proved for the n case:

$$
=2(n+1)+(2 n-1+2(n+1))+3 n^{2}
$$

Simplify
$=3 n^{2}+6 n+3=3\left(n^{2}+2 n+1\right)=3(n+1)^{2}$

Problem 1.12

a) Verify the binomial theorem for $\mathrm{n}=1,2$, and 3 .
b) Show for $\mathrm{k}=1,2, \ldots, \mathrm{n} .\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}$
c) Prove the binomial theorem using mathematical induction and part (b).

Solution

a) $\mathrm{n}=1$
$(a+b)=\binom{1}{0} a+\binom{1}{1} b=a+b$
$\mathrm{n}=2$
$(a+b)^{2}=\binom{2}{0} a^{2}+\binom{2}{1} a b+\binom{2}{2} b^{2}=a^{2}+2 a b+b^{2}$
$\mathrm{n}=3$
$(a+b)^{3}=\binom{3}{0} a^{3}+\binom{3}{1} a^{2} b+\binom{3}{2} a b^{2}+\binom{3}{3} b^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{2}$
b) Expand:
$\binom{n}{k}+\binom{n}{k-1}=\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!}$
shift factorials

$$
=\frac{n!}{k *(k-1)!(n-k)!}+\frac{n!}{(k-1)!(n-k+1) *(n-k)!}
$$

multiply by 1 to clean up denominators
$=\frac{n!(n-k+1)}{k *(k-1)!(n-k+1) *(n-k)!}+\frac{n!* k}{k *(k-1)!(n-k+1) *(n-k)!}$
$=\frac{n!(n-k+1+k)}{k *(k-1)!(n-k+1) *(n-k)!}=\frac{(n+1)!}{k!(n-k+1)!}=\binom{n+1}{k}$
c) Prove the binomial theorem using mathematical induction and part (b).

Base case:
in part a), we proved for some cases of n.
Inductive hypothesis:
$(a+b)^{n}=a^{n}+\sum_{i=1}^{n-1}\binom{n}{i} a^{n-i} * b^{i}+b^{n}$
Inductive step:
We want to show $(a+b)^{n+1}=a^{n+1}+\sum_{i=1}^{n}\binom{n+1}{i} a^{n+1-i} b^{i}+b^{n+1}$
$(a+b)^{n+1}=(a+b) *(a+b)^{n}$
Distributing:
$=a\left(a^{n}+\sum_{i=1}^{n-1}\binom{n}{i} a^{n-i} * b^{i}+b^{n}\right)+b\left(a^{n}+\sum_{i=1}^{n-1}\binom{n}{i} a^{n-i} * b^{i}+b^{n}\right)$

$$
\begin{aligned}
& =a^{n+1}+\sum_{i=1}^{n-1}\binom{n}{i} a^{n+1-i} * b^{i}+a b^{n}+b a^{n}+\sum_{i=1}^{n-1}\binom{n}{i} a^{n-i} * b^{i+1}+b^{n+1} \\
& =a^{n+1}+\sum_{i=1}^{n}\binom{n}{i} a^{n+1-i} * b^{i}+\sum_{i=0}^{n-1}\binom{n}{i} a^{n-i} * b^{i+1}+b^{n+1}
\end{aligned}
$$

Recognise that we can alter the index slightly to get the following:
$\sum_{i=0}^{n-1}\binom{n}{i} a^{n-i} * b^{i+1}=\sum_{i=1}^{n}\binom{n}{i-1} a^{n+1-i} * b^{i}$
Substituting:
$=a^{n+1}+\sum_{i=1}^{n}\binom{n}{i} a^{n+1-i} * b^{i}+\sum_{i=1}^{n}\binom{n}{i-1} a^{n+1-i} * b^{i}+b^{n+1}$
combining under one sum:
$=a^{n+1}+\sum_{i=1}^{n}\binom{n}{i} a^{n+1-i} * b^{i}+\binom{n}{i-1} a^{n+1-i} * b^{i}+b^{n+1}$
factoring:
$=a^{n+1}+\sum_{i=1}^{n}\left(\binom{n}{i}+\binom{n}{i-1}\right) a^{n+1-i} b^{i}+b^{n+1}$
Thus, we have shown the inductive step holds true.
$=a^{n+1}+\sum_{i=1}^{n}\binom{n+1}{i} a^{n+1-i} b^{i}+b^{n+1}=(a+b)^{n+1}$

Problem 2.1

Show $\sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{24}, \sqrt{31}$ are irrational

Solution

1. $\sqrt{3}$
$x^{2}-3=0$
$c_{2}=1, c_{0}=3$
The only possible rational roots are $\pm 1, \pm 3$, neither of these solve the equation.
2. $\sqrt{5}$
$x^{2}-3=0$
$c_{2}=1, c_{0}=5$
The only possible rational roots are $\pm 1, \pm 5$, neither of these solve the equation.
3. $\sqrt{7}$
$x^{2}-3=0$
$c_{2}=1, c_{0}=7$
The only possible rational roots are $\pm 1, \pm 7$, neither of these solve the equation.
4. $\sqrt{24}$
$x^{2}-3=0$
$c_{2}=1, c_{0}=24$
The only possible rational roots are $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24$, none of these solve the equation.
5. $\sqrt{31}$
$x^{2}-3=0$
$c_{2}=1, c_{0}=31$
The only possible rational roots are $\pm 1, \pm 31$, neither of these solve the equation.

Problem 2.2

Show $\sqrt[3]{2}, \sqrt[7]{5}, \sqrt[4]{13}$ are irrational

Solution

1. $\sqrt[3]{2}$
$x^{3}-2=0$
$c_{2}=1, c_{0}=2$
The only possible rational roots are $\pm 1, \pm 2$, neither of these solve the equation.
2. $\sqrt[7]{5}$
$x^{7}-5=0$
$c_{2}=1, c_{0}=5$
The only possible rational roots are $\pm 1, \pm 5$, neither of these solve the equation.
3. $\sqrt[4]{13}$
$x^{4}-13=0$
$c_{2}=1, c_{0}=13$
The only possible rational roots are $\pm 1, \pm 13$, neither of these solve the equation.

Problem 2.7

Show $\sqrt{4+2 \sqrt{3}}-\sqrt{3}, \sqrt{6+4 \sqrt{2}}-\sqrt{2}$ are rational

Solution

1. $\sqrt{4+2 \sqrt{3}}-\sqrt{3}=x$

$$
\begin{aligned}
& (x+\sqrt{3})^{2}=4+2 \sqrt{3} \\
& =x^{2}+2 \sqrt{3} x+3=4+2 \sqrt{3}
\end{aligned}
$$

$\mathrm{x}=1$ satisfies the above equality, and 1 is rational and thus $\sqrt{4+2 \sqrt{3}}-\sqrt{3}=1$ is rational
2. $\sqrt{6+4 \sqrt{2}}-\sqrt{2}=x$
$(x+\sqrt{2})^{2}=6+4 \sqrt{2}$
$x^{2}+2 \sqrt{2} x+2=6+4 \sqrt{2}$
$\mathrm{x}=2$ satisfies the above equality, and 2 is rational and thus $\sqrt{6+4 \sqrt{2}}-\sqrt{2}=2$ is rational.

Problem 3.6

Prove $|a+b+c| \leq|a|+|b|+|c|$ for all $a, b, c \in R$
and

$$
\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|
$$

Solution

a) The triangle inequality states:
$|a+b| \leq|a|+|b|$ for all a, b
letting $b^{\prime}=b+c$, which is still a real number.

$$
|a+b+c|=\left|a+b^{\prime}\right| \leq|a|+\left|b^{\prime}\right|=|a|+|b+c|
$$

We can apply the triangle inequality again to the right since b and c are still real numbers.
$|b+c| \leq|b|+|c|$
Thus,
$|a+b+c| \leq|a|+|b+c| \leq|a|+|b|+|c|$
b) the base case $(\mathrm{n}=3)$ is prove in part a). We simple let $a_{1}=a, a_{2}=b, a_{3}=c$

Inductive hypothesis: $\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|$
Inductive step:
$\left|a_{1}+a_{2}+\ldots a_{n}+a_{n+1}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots\left|a_{n}\right|+\left|a_{n+1}\right|$
We can combine $a_{n}+a_{n+1}=a^{\prime}$
since a^{\prime} is still a real number, we the following still holds true.
$\left|a_{1}+a_{2}+\ldots a^{\prime}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots\left|a^{\prime}\right|$
and from the triangle inequality,
$\left|a^{\prime}\right|=\left|a_{n}+a_{n+1}\right| \leq\left|a_{n}\right|+\left|a_{n+1}\right|$
Thus, the following must also be true:
$\left|a_{1}\right|+\left|a_{2}\right|+\ldots\left|a^{\prime}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots\left|a_{n}\right|+\left|a_{n+1}\right|$
Finally, by the ordering of the inequalities.
$\left|a_{1}+a_{2}+\ldots a_{n}+a_{n+1}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots\left|a_{n}\right|+\left|a_{n+1}\right|$

Problem 4.11

$a<b \in R$, show there are infinitely many rationals between a and b .

Solution Denseness: If $a, b \in R$ and a; b, then there is a rational $r \in Q$ such that $a<r<b$.
We can proceed with induction.
Base case $(\mathrm{n}=1)$: by the denseness property, we know that at least 1 rational number exists between a and b .

Inductive hypothesis: there are n distinct rational numbers (denoted by $r_{1} \ldots r_{n}$) between a and b. $r_{n}<$ $r_{1} \ldots r_{n-1}$.

Inductive step: We know that r_{n} is also a real number since Q is a subset of R .
We can now use the denseness property of R to prove the existence of another rational number
Denseness: $a<r_{n+1}<r_{n}$
by ordering of the inequalities, $a<r_{n+1}<b$
We can continue for as long as we have natural numbers n, so there are an infinite number of rational numbers between a and b .

Problem 4.14

Prove $\sup (A+B)=\sup (A)+\sup (B)$
and
$\inf (A+B)=\inf A+\inf B$.

Solution

a) By construction $\sup (A+B)$ contains all the elements $\mathrm{a}+\mathrm{b}$.

We can construct an upper bound for A:
$\sup (A+B) \geq a+b$
$\sup (A+B)-b \geq a, \forall a, b \in A, B$
This is true because $A+B$ contains all the sums $a+b$ and uses definition of sup,
Thus, $\sup (A) \leq \sup (A+B)-b, \forall b \in B$
Now, we can use the hint to show
$\sup (A+B)-\sup (A) \geq \sup (A+B)-\sup (A+B)+b=b, \forall b \in B$
$\sup (A+B)-\sup (A) \geq b, \forall b \in B$
$\sup (A+B) \geq \sup (A)+b, \forall b \in B$
Together, since $\sup (A+B)-\sup (A) \geq b \forall b \in B$
We can establish a supremum:
$\sup (A+B)-\sup (A)=\sup (B)$
And thus, $\sup (A+B)=\sup (A) \sup (B)$
b)

We can construct a lower bound for A:
$\inf (A+B)-b \leq a, \forall a, b \in A, B$
$\inf (A+B) \leq a+b, \forall a, b \in A, B$
This equality is true because $A+B$ contains all the sums $a+b$ and uses def of inf,
Thus, $\inf (A+B)-b \leq \inf (A), \forall b \in B$
Now, like above we can use the above relationship to show the following relationship between $\inf (\mathrm{A})$ and $\inf (\mathrm{A}+\mathrm{B})$
$\inf (A+B)-\inf (A) \leq \inf (A+B)-\inf (A+B)-b=b, \forall b \in B$
$\inf (A+B)-\inf (A) \leq b, \forall b \in B$
$\inf (A+B) \leq \inf (A)+b, \forall b \in B$
Together, since $\inf (A+B)-\inf (A) \leq b, \forall b \in B$
We can establish an infimum:
$\inf (A+B)-\inf (A)=\inf (B)$
And thus, $\inf (A+B)=\inf (A)+\inf (B)$

Problem 7.5

limits

Solution

1. $\lim \sqrt{n^{2}+1}-n$

We will 'irrationalize the denominator'
$\left(\sqrt{n^{2}+1}-n\right) \frac{\sqrt{n^{2}+1}+n}{\sqrt{n^{2}+1}+n}=\frac{n^{2}+1-n^{2}}{\sqrt{n^{2}+1}+n}$
$=\frac{1}{\sqrt{n^{2}+1}+n}$
Since there is a constant term on top and a term that increases as a function of n on the bottom,
$\lim \frac{1}{\sqrt{n^{2}+1}+n}=0$
2. $\lim \sqrt{n^{2}+n}-n$
$\left(\sqrt{n^{2}+n}-n\right) \frac{\sqrt{n^{2}+n}+n}{\sqrt{n^{2}+n}+n}=\frac{n^{2}+n-n^{2}}{\sqrt{n^{2}+n}+n}$
$=\frac{n}{\sqrt{n^{2}+n}+n}$
$=\frac{1}{\frac{\sqrt{n^{2}+n}}{n}+1}$
Taking the limit of the only term with n ,
$\lim \frac{\sqrt{n^{2}+n}}{n}=\lim \frac{n \sqrt{1+\frac{1}{n}}}{n}=\lim \sqrt{1+\frac{1}{n}}=1$
Thus, after substituting back in...
$\lim \sqrt{n^{2}+n}-n=\frac{1}{2}$
3. $\lim \sqrt{4 n^{2}+n}-2 n$
$\left(\sqrt{4 n^{2}+n}-2 n\right) \frac{\sqrt{4 n^{2}+n}+2 n}{\sqrt{4 n^{2}+n}+2 n}=\frac{4 n^{2}+n-4 n^{2}}{\sqrt{4 n^{2}+n}+2 n}=\frac{n}{\sqrt{4 n^{2}+n}+2 n}$
$=\frac{1}{\frac{\sqrt{4 n^{2}+n}}{n}+2}$
Taking the limit of the only term with n,
$\lim \frac{\sqrt{4 n^{2}+n}}{n}=\lim \frac{2 n \sqrt{1+\frac{1}{4 n}}}{n}=2 * \lim \sqrt{1+\frac{1}{4 n}}=2 * 1$
Thus, after substituting back in...
$\lim \sqrt{4 n^{2}+n}-2 n=\frac{1}{4}$

