Problem 9.9

Suppose there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$. (a) Prove that if $\lim s_{n}=+\infty$, then $\lim t_{n}=+\infty$. (b) Prove that if $\lim t_{n}=-\infty$, then $\lim s_{n}=-\infty$. (c) Prove that if $\lim s_{n}$ and $\lim t_{n}$ exist, then $\lim s_{n} \leq \lim t_{n}$.

Solution

a) By Definition of limits,
$\forall M>0, \exists n>N$ s.t.s $s_{n}>M$
since $\lim s_{n}=+\infty$
$s_{n}>M$
Since $s_{n} \leq t_{n}$
$t_{n}>s_{n}>M$
Thus, for the same n and M we have shown that
$\lim t_{n}=\infty$
b) By Definition of limits,
$\forall M<0, \exists n>N$ s.t.t $t_{n}<M$
since $\lim t_{n}=-\infty$
$t_{n}<M$
Since $s_{n} \leq t_{n}$
$s_{n} \leq t_{n}<M$
Thus, for the same n and M we have shown that
$\lim s_{n}=-\infty$
c) let $\lim s_{n}=s$ and $\lim t_{n}=t$

We are given
$t_{n}-s_{n} \geq 0 \forall n>N_{0}$
since $t_{n}-s_{n}$ is a strictly non-negative number for all n ,
$\lim \left(t_{n}-s_{n}\right) \geq 0$
we can take the limit of the difference as normal
$\lim t_{n}-\lim s_{n} \geq 0$
which implies what we want
$\lim s_{n} \leq \lim t_{n}$

Problem 9.15

Show $\lim _{x \rightarrow+\infty} \frac{a^{n}}{n!}=0$ for all $a \in R$.

Solution Let $\mathrm{L}=\lim \frac{s_{n+1}}{s_{n}}$
if L; 1 , then $\lim s_{n}=0$
$\mathrm{L}=\lim \frac{\frac{a^{n+1}}{(n+1)!}}{\frac{\left.a^{n}\right)}{n!}}=\lim \frac{a}{n+1}=0$
$L<1$
Thus, $\lim s_{n}=\lim \frac{a^{n}}{n!}=0$

Problem 10.7

Let \mathbf{S} be a bounded nonempty subset of R such that sup S is not in S . Prove there is a sequence (s_{n}) of points in S such that $\lim s_{n}=\sup S$.

Solution Let $\sup (\mathrm{s})=\mathrm{s}$
$\forall n>N, s-\frac{1}{n}$ is not necessarily an upper bound for s
define a sequence in S called s_{n}
and let $s-\frac{1}{n}<s_{n}<s$
$\lim s-\frac{1}{n}=s$
by the squeeze lemma, $\lim s_{n}=s$

Problem 10.8

Let $\left(s_{n}\right)$ be an increasing sequence of positive numbers and define $\sigma_{n}=\frac{1}{n}\left(s_{1}+s_{2}+\ldots+s_{n}\right)$. Prove $\left(\sigma_{n}\right)$ is an increasing sequence.

Solution We want to show that the sequence σ_{n} is increasing.
$\sigma_{n+1} \geq \sigma_{n}$
base case: $\mathrm{n}=1$
$\frac{1}{2}\left(s_{1}+s_{2}\right) \geq \frac{1}{1}\left(s_{1}\right)=\frac{1}{2}\left(s_{1}+s_{1}\right)$
since $s_{2}>s_{1}$, the base case holds for an n
Inductive step
$\frac{1}{n+1}\left(s_{1}+s_{2}+\ldots+s_{n}+s_{n+1}\right) \geq \frac{1}{n}\left(s_{1}+s_{2}+\ldots+s_{n}\right)$
Identity:
$\frac{s_{n}}{n}-\frac{s_{n}}{n+1}=\frac{s_{n}}{n(n+1)}$
Applying the identity and subtracting $\frac{s_{1}}{n+1}+\frac{s_{2}}{n+1} \ldots \frac{s_{n}}{n+1}$ from both sides,
$\frac{s_{n+1}}{n+1} \geq \frac{s_{1}}{n(n+1)}+\frac{s_{2}}{n(n+1)}+\ldots \frac{s_{n}}{n(n+1)}$
$s_{n+1} \geq \frac{1}{n}\left(s_{n}+s_{2}+\ldots s_{n}\right)$
It is true by definition of s_{n} being an increasing sequence that the above holds true, since $s_{n+1}>s_{n}>$ $s_{n-1} \ldots$

Thus, σ_{n} is an increasing sequence.

Problem 10.9

$s_{n}=1, s_{n+1}=\frac{n}{n+1} s_{n}^{2}$

Solution

a) $s_{2}=\frac{2}{3} 1^{2}=\frac{2}{3}$
$s_{3}=\frac{3}{4}\left(\frac{2}{3}\right)^{2}=\frac{12}{36}=\frac{1}{3}$
$s_{4}=\frac{4}{5} \frac{1}{3}^{2}=\frac{4}{45}$
b) We will try induction to prove that it is a decreasing sequence.

Base case: $\mathrm{n}=1$ is proven above since
$s_{2}<s_{1}$
$\frac{2}{3}<1$
Inductive step:
$\frac{n+1}{n+2}<1$
$s_{n+2}=\frac{n+1}{n+2} s_{n+1}<s_{n+1}$
Thus, we have proven that
$s_{n}<s_{n-1} \ldots<s_{1}$
This is a strictly decreasing sequence
We also need to show that it is bounded.
We can still use a short induction combined with our above proof.
Since s_{n} is decreasing, then $s_{n} \leq 1$
we also know that $s_{n}>0 \forall n$
This is because $\frac{n}{n+1}$ will always be a positive fraction $0<\frac{n}{n+1}<1$
Let $s>0,0<r<1$
$s * r>0$ holds true trivially since $s>0$
$s * r * r$ still holds true via the same reasoning.
Thus, let $s_{n}=s, r=\frac{n}{n+1}$
$s_{n}>0$
and thus, s_{n} is bounded by its first element and 0
$0<s_{n+1}<s_{n} \leq 1 \forall n>0$
c) $s=\lim _{n \rightarrow \infty} s_{n+1}$
$\lim s_{n+1}=\lim s_{n}$
$s_{n+1}=\frac{n}{n+1} s_{n}$
$s=\frac{n}{n+1} s$
$\mathrm{s}=0$ satisfies the above equation
thus:
$\lim s_{n}=0$

Problem 10.10

$s_{n}=1, s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$

Solution

a) $s_{2}=\frac{1}{3} \cdot(1+1)=\frac{2}{3}$
$s_{3}=\frac{1}{3} \cdot\left(\frac{2}{3}+1\right)=\frac{2}{9}+\frac{3}{9}=\frac{5}{9}$
$s_{4}=\frac{1}{3} \cdot\left(\frac{5}{9}+1\right)=\frac{5}{27}+\frac{9}{27}=\frac{14}{27}$
b) show $s_{n}>\frac{1}{2}, \forall n$

We will proceed with induction
Base case: $\mathrm{n}=1$
$s_{1}=1>\frac{1}{2}$
Inductive hypothesis:
$s_{n}>\frac{1}{2}$
Inductive step:
$s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)=\frac{s_{n}}{3}+\frac{1}{3}>\frac{1}{6}+\frac{1}{3}=\frac{1}{2}$
Thus, using the fact that $s_{n}>\frac{1}{2}$, we can see:
$s_{n+1}>\frac{1}{2}$
c) show s_{n} is decreasing
we want to show
$s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)<s_{n}$
s_{n} is decreasing iff,
$s_{n}<3 s_{n}-1$
$s_{n}>\frac{1}{2}$
Since this is a true statement which can be seen by part a, we can conclude that s_{n} is decreasing.
d) $\lim s_{n}$ exists because it is decreasing and bounded because $\frac{1}{2}<s_{n}<1 \forall n$.
$\lim s_{n}=\frac{1}{2}$

Problem 10.11

$t_{1}=1, t_{n+1}=\left[1-\frac{1}{4 n^{2}}\right] * t_{n}, \forall n \geq 1$

Solution

a) $\lim t_{n}$ exists

First, we must see prove its a decreasing sequence.
This can be seen by looking at the ratio multiplying t_{n}
$r=1-\frac{1}{4 n^{2}}<1, \forall n>0$
Since $r<1$, any number $t>0$
The following must hold:
$t * r>t * r^{2}>t * r^{3}$
Since our sequence can be rewriten such that
$t_{1}=t * r^{0}, t_{2}=t * r, \ldots t_{n}=t * r^{n-1}$
$t_{1}>t_{2}>\ldots t_{n}$
Thus, t_{n} is a decreasing sequence.
Now, what bounds t_{n} ?
Since t_{n} is decreasing, it is trivially upper bounded by its first element
$t_{n} \leq 1$
We can set the lower bound to 0 .
This is because we start with an initial value $t_{1}=1>0$
The sequence itself is decreasing as we have proved before, but it will still be positive.
We know that from before, the sequence can be decomposed as a product of ratios r .
We can show that $\inf \mathrm{r}=1$, and thus can never be negative.
$\liminf \left(1-\frac{1}{4 n^{2}}\right)=\lim _{N \rightarrow \infty} \inf 1-\frac{1}{4 n^{2}}: n>N$
Looking at the first few terms of the sequence,
$\mathrm{N}=0 ; \inf \left\{1-\frac{1}{4}, 1-\frac{1}{16}, \ldots\right\}=\frac{3}{4}$
$\mathrm{N}=1 ; \inf \left\{1-\frac{1}{16}, 1-\frac{1}{36}, \ldots\right\}=\frac{15}{16}$
$\lim \inf r=1>0$
Thus, our sequence will never multiply our base $t_{1}=1$ by a negative number, and thus the sequence t_{n} is strictly non-negative.
$t_{n}>0$

We now have bounds for t_{n}
$0<t_{n} \leq 1$
b) $\lim t_{n}=$?
we can take the limit of an equivalent sequence:
$t_{n}=\prod_{i=1}^{n}\left(1-\frac{1}{4 i^{2}}\right)^{i-1}$
$\lim \prod_{i=1}^{n}\left(1-\frac{1}{4 i^{2}}\right)^{i-1}$
I have no idea what this is. I will guess that it is around 0.5 since it starts at $1, \frac{3}{4} \ldots$ and it is bounded $(0,1)$

Problem Squeeze Test

Let a_{n}, b_{n}, c_{n} be three sequences, such that $a_{n} \leq b_{n} \leq c_{n}$, and $\mathrm{L}=\lim a_{n}=\lim c_{n}$, Show that $\mathrm{L}=$ $\lim b_{n}$

Solution We are given that, by definition of limits, $\exists \epsilon>0$ s.t. $\forall n>N_{0}$
$\left|a_{n}-L\right|<\epsilon_{a}$
$L-\epsilon<a_{n}<L+\epsilon$
and
$\forall n>N_{1}$
$\left|c_{n}-L\right|<\epsilon$
$L-\epsilon<c_{n}<L+\epsilon$
Using what we are given:
$a_{n} \leq b_{n} \leq c_{n}$
implies, for $N=\max \left(N_{1}, N_{0}\right)$
$L-\epsilon \leq b_{n} \leq L+\epsilon$
Which further implies for $n>N$
$\left|b_{n}-L\right|<\epsilon$
Which means
$\lim b_{n}=L$

