Problem 9.9

Suppose there exists N_0 such that $s_n \leq t_n$ for all $n > N_0$. (a) Prove that if $\lim s_n = +\infty$, then $\lim t_n = +\infty$. (b) Prove that if $\lim t_n = -\infty$, then $\lim s_n = -\infty$. (c) Prove that if $\lim s_n$ and $\lim t_n$ exist, then $\lim s_n \leq \lim t_n$.

Solution

a) By Definition of limits,

 $\forall M > 0, \exists n > Ns.t.s_n > M$

since $\lim s_n = +\infty$

 $s_n > M$

Since $s_n \leq t_n$

$$t_n > s_n > M$$

Thus, for the same n and M we have shown that

$$\lim t_n = \infty$$

b) By Definition of limits,

 $\forall M < 0, \exists n > Ns.t.t_n < M$ since $\lim t_n = -\infty$ $t_n < M$ Since $s_n \leq t_n$ $s_n \leq t_n < M$ Thus, for the same n and M we have shown that $\lim s_n = -\infty$

c) let $\lim s_n = s$ and $\lim t_n = t$

We are given

 $t_n - s_n \ge 0 \forall n > N_0$

since $t_n - s_n$ is a strictly non-negative number for all n,

$$\lim(t_n - s_n) \ge 0$$

we can take the limit of the difference as normal

 $\lim t_n - \lim s_n \ge 0$

which implies what we want

 $\lim s_n \le \lim t_n$

Problem 9.15

Show $\lim_{x\to+\infty} \frac{a^n}{n!} = 0$ for all $a \in \mathbb{R}$.

Solution Let $L = \lim \frac{s_{n+1}}{s_n}$

if L ; 1, then
$$\lim s_n = 0$$

L = $\lim \frac{\frac{a^{n+1}}{(n+1)!}}{\frac{a^n}{n!}} = \lim \frac{a}{n+1} = 0$
L < 1

Thus, $\lim s_n = \lim \frac{a^n}{n!} = 0$

Let S be a bounded nonempty subset of R such that sup S is not in S. Prove there is a sequence (s_n) of points in S such that $\lim s_n = \sup S$.

Solution Let $\sup(s) = s$

 $\forall n>N, s-\frac{1}{n}$ is not necessarily an upper bound for s

define a sequence in S called s_n

and let $s - \frac{1}{n} < s_n < s$ $\lim s - \frac{1}{n} = s$

by the squeeze lemma, $\lim s_n = s$

Let (s_n) be an increasing sequence of positive numbers and define $\sigma_n = \frac{1}{n}(s_1 + s_2 + \dots + s_n)$. Prove (σ_n) is an increasing sequence.

Solution We want to show that the sequence σ_n is increasing.

 $\sigma_{n+1} \ge \sigma_n$

base case: n = 1

 $\frac{1}{2}(s_1 + s_2) \ge \frac{1}{1}(s_1) = \frac{1}{2}(s_1 + s_1)$

since $s_2 > s_1$, the base case holds for an n

Inductive step

$$\frac{1}{n+1}(s_1 + s_2 + \dots + s_n + s_{n+1}) \ge \frac{1}{n}(s_1 + s_2 + \dots + s_n)$$

Identity:

$$\frac{s_n}{n} - \frac{s_n}{n+1} = \frac{s_n}{n(n+1)}$$

Applying the identity and subtracting $\frac{s_1}{n+1} + \frac{s_2}{n+1} \dots \frac{s_n}{n+1}$ from both sides,

$$\frac{s_{n+1}}{n+1} \ge \frac{s_1}{n(n+1)} + \frac{s_2}{n(n+1)} + \dots \frac{s_n}{n(n+1)}$$

$$s_{n+1} \ge \frac{1}{n} (s_n + s_2 + \dots s_n)$$

It is true by definition of s_n being an increasing sequence that the above holds true, since $s_{n+1} > s_n > s_n$

 $s_{n-1}...$

Thus, σ_n is an increasing sequence.

 $s_n = 1, s_{n+1} = \frac{n}{n+1}s_n^2$

Solution

a)
$$s_2 = \frac{2}{3}1^2 = \frac{2}{3}$$

 $s_3 = \frac{3}{4}(\frac{2}{3})^2 = \frac{12}{36} = \frac{1}{3}$
 $s_4 = \frac{4}{5}\frac{1}{3}^2 = \frac{4}{45}$

b) We will try induction to prove that it is a decreasing sequence.

Base case: n = 1 is proven above since

 $s_2 < s_1$

$$\frac{2}{3} < 1$$

Inductive step:

$$\frac{n+1}{n+2} < 1$$

$$s_{n+2} = \frac{n+1}{n+2}s_{n+1} < s_{n+1}$$

Thus, we have proven that

$$s_n < s_{n-1} \dots < s_1$$

This is a strictly decreasing sequence

We also need to show that it is bounded.

We can still use a short induction combined with our above proof.

Since s_n is decreasing, then $s_n \leq 1$

we also know that $s_n > 0 \forall n$

This is because $\frac{n}{n+1}$ will always be a positive fraction $0 < \frac{n}{n+1} < 1$

Let
$$s > 0, 0 < r < 1$$

s * r > 0 holds true trivially since s > 0

s * r * r still holds true via the same reasoning.

Thus, let
$$s_n = s, r = \frac{n}{n+1}$$

 $s_n > 0$

and thus, \boldsymbol{s}_n is bounded by its first element and $\boldsymbol{0}$

$$0 < s_{n+1} < s_n \le 1 \forall n > 0$$

c) $s = \lim_{n \to \infty} s_{n+1}$

 $\lim s_{n+1} = \lim s_n$

 $s_{n+1} = \frac{n}{n+1}s_n$

$$s = \frac{n}{n+1}s$$

 $\mathbf{s}=\mathbf{0}$ satisfies the above equation

thus:

 $\lim s_n = 0$

 $s_n = 1, s_{n+1} = \frac{1}{3}(s_n + 1)$

Solution

a)
$$s_2 = \frac{1}{3} \cdot (1+1) = \frac{2}{3}$$

 $s_3 = \frac{1}{3} \cdot (\frac{2}{3}+1) = \frac{2}{9} + \frac{3}{9} = \frac{5}{9}$
 $s_4 = \frac{1}{3} \cdot (\frac{5}{9}+1) = \frac{5}{27} + \frac{9}{27} = \frac{14}{27}$

b) show $s_n > \frac{1}{2}, \forall n$

We will proceed with induction

Base case: n = 1

$$s_1 = 1 > \frac{1}{2}$$

Inductive hypothesis:

$$s_n > \frac{1}{2}$$

Inductive step:

 $s_{n+1} = \frac{1}{3}(s_n+1) = \frac{s_n}{3} + \frac{1}{3} > \frac{1}{6} + \frac{1}{3} = \frac{1}{2}$

Thus, using the fact that $s_n > \frac{1}{2}$, we can see:

$$s_{n+1} > \frac{1}{2}$$

c) show s_n is decreasing

we want to show

$$s_{n+1} = \frac{1}{3}(s_n + 1) < s_n$$

 s_n is decreasing iff,

 $s_n < 3s_n - 1$

$$s_n > \frac{1}{2}$$

Since this is a true statement which can be seen by part a, we can conclude that s_n is decreasing.

d) $\lim s_n$ exists because it is decreasing and bounded because $\frac{1}{2} < s_n < 1 \forall n$.

 $\lim s_n = \frac{1}{2}$

 $t_1 = 1, t_{n+1} = [1 - \frac{1}{4n^2}] * t_n, \forall n \ge 1$

Solution

a) $\lim t_n$ exists

First, we must see prove its a decreasing sequence.

This can be seen by looking at the ratio multiplying t_n

 $r=1-\tfrac{1}{4n^2}<1, \forall n>0$

Since r < 1, any number t > 0

The following must hold:

$$t * r > t * r^2 > t * r^3$$

Since our sequence can be rewriten such that

$$t_1 = t * r^0, t_2 = t * r, \dots t_n = t * r^{n-1}$$

$$t_1 > t_2 > \dots t_n$$

Thus, t_n is a decreasing sequence.

Now, what bounds t_n ?

Since t_n is decreasing, it is trivially upper bounded by its first element

 $t_n \leq 1$

We can set the lower bound to 0.

This is because we start with an initial value $t_1 = 1 > 0$

The sequence itself is decreasing as we have proved before, but it will still be positive.

We know that from before, the sequence can be decomposed as a product of ratios r.

We can show that $\inf r = 1$, and thus can never be negative.

 $\liminf(1 - \frac{1}{4n^2}) = \lim_{N \to \infty} \inf(1 - \frac{1}{4n^2}) : n > N$

Looking at the first few terms of the sequence,

$$\begin{split} \mathbf{N} &= 0; \, \inf\{1 - \frac{1}{4}, 1 - \frac{1}{16}, \ldots\} = \frac{3}{4} \\ \mathbf{N} &= 1; \, \inf\{1 - \frac{1}{16}, 1 - \frac{1}{36}, \ldots\} = \frac{15}{16} \\ \lim \inf r = 1 > 0 \end{split}$$

Thus, our sequence will never multiply our base $t_1 = 1$ by a negative number, and thus the sequence t_n is strictly non-negative.

$$t_n > 0$$

We now have bounds for t_n

 $0 < t_n \leq 1$

b) $\lim t_n = ?$

we can take the limit of an equivalent sequence:

$$t_n = \prod_{i=1}^n (1 - \frac{1}{4i^2})^{i-1}$$
$$\lim_{i=1}^n (1 - \frac{1}{4i^2})^{i-1}$$

I have no idea what this is. I will guess that it is around 0.5 since it starts at 1, $\frac{3}{4}$...

and it is bounded (0,1)

Problem Squeeze Test

Let a_n, b_n, c_n be three sequences, such that $a_n \leq b_n \leq c_n$, and $L = \lim a_n = \lim c_n$, Show that $L = \lim b_n$

Solution We are given that, by definition of limits, $\exists \epsilon > 0 s.t. \forall n > N_0$

$$\begin{split} |a_n - L| &< \epsilon_a \\ L - \epsilon < a_n < L + \epsilon \\ \text{and} \\ \forall n > N_1 \\ |c_n - L| < \epsilon \\ L - \epsilon < c_n < L + \epsilon \\ \text{Using what we are given:} \\ a_n &\leq b_n \leq c_n \\ \text{implies, for } N &= max(N_1, N_0) \\ L - \epsilon &\leq b_n \leq L + \epsilon \\ \text{Which further implies for } n > N \\ |b_n - L| &< \epsilon \\ \text{Which means} \\ \lim b_n &= L \end{split}$$