Problem 12.10

Prove $\left(s_{n}\right)$ is bounded if and only if $\lim \sup \left|s_{n}\right|<+\infty$

Solution Suppose we had a bounded sequence $\left|s_{n}\right| \leq b ; \forall n, b \in \mathbf{R}$
This implies that:
$\limsup \left|s_{n}\right|=\lim _{n \rightarrow \infty} \sup \left\{A_{n}\right\}$
$A_{n}=\left\{\left|s_{i}\right|: i>n\right\}$
By definition of being bounded:
$\sup \left\{A_{n}\right\} \leq b \forall n$
$\lim _{n \rightarrow \infty} \sup \left\{A_{n}\right\} \leq b<\infty$
reverse direction:
If we had an $\lim \sup s_{n}<\infty \operatorname{implies} s_{n}$ is a bounded sequence
let L be our what our limsup approaches.
$\lim _{n \rightarrow \infty} \sup \left\{A_{n}\right\} \leq L<\infty$
limsup can be realized as actual sup for an ϵ
This, with an epsilon we can say that
$\sup \left\{A_{n}\right\} \leq L+\epsilon$
This can serve as a bound for s_{n}
$\left|s_{n}\right| \leq L$

Problem 12.12

$$
\sigma_{n}=\frac{1}{n}\left(s_{1}+s_{2}+\ldots+s_{n}\right) .
$$

Solution

1. Show $\liminf s_{n} \leq \liminf \sigma_{n} \leq \limsup \sigma_{n} \leq \limsup s_{n}$

First inequality:
$\inf \left\{\sigma_{n}: n>N\right\}=\inf \left\{\frac{1}{n}\left(s_{1}+s_{2} \ldots s_{n}\right): n>N\right\}$
The sum of n terms of a sequence can not be lower than the sum of the smallest element n times.
$s_{1}+s_{2} \ldots s_{n} \geq n * \inf \left\{s_{n}\right\}$
$\inf \left\{\frac{1}{n}\left(s_{1}+s_{2} \ldots s_{n}\right): n>N\right\} \geq \inf \left\{s_{n}\right\}$
This holds for all n
$\liminf s_{n} \leq \liminf \sigma_{n}$
Second inequality:
$\limsup \sigma_{n} \leq \lim \sup s_{n}$
The sum of n terms of a sequence can not be greater than the sum of the largest element n times.
$s_{1}+s_{2} \ldots s_{n} \leq n * \sup \left\{s_{n}\right\}$
$\sup \left\{\frac{1}{n}\left(s_{1}+s_{2} \ldots s_{n}\right): n>N\right\} \leq \sup \left\{s_{n}\right\}$
This holds for all n
$\limsup \sigma_{n} \leq \limsup s_{n}$
2. Show that if $\lim s_{n}$ exists, then $\lim \sigma_{n}$ exists and $\lim \sigma_{n}=\lim s_{n}$.

The limit existing implies the following:
$\forall \epsilon>0, \exists n>N s . t$.
$\left|s_{n}-s\right|<\epsilon$
By definition of σ_{n} :
$\sigma_{n}=\frac{1}{n}\left(s_{1}+s_{2}+\ldots s_{n}\right)$
3. Give an example where $\lim \sigma_{n}$ exists, but $\lim s_{n}$ does not exist.

If we take the alternating sequence that doees not converge $s_{n}=-1^{n}$, the sequence itself does not converge but its average simplifies to a subsequence of $a_{n}=\frac{1}{n}$ which does converge

Problem 14.2

Which converge?

Solution

a) $\sum \frac{n-1}{n^{2}}$

This is a variant of the harmonic series because it can be reduced to $\frac{1}{n}$.
Diverges.
b) $\sum(-1)^{n}$
$(-1)^{n}$ is not decreasing nor is the limit of $(-1)^{n}$ convergent as a sequence.
Diverges
c) $\sum \frac{3 n}{n^{3}}=\sum \frac{3}{n^{2}}$

Integral test:
$\sum \frac{3}{n^{2}} \leq \int_{1}^{\infty} \frac{3}{n^{2}}=\left.3 *\left(\frac{1}{n}\right)\right|_{1} ^{\infty}=3(1-0)=3<\infty$
By the integral test,
Converges
d) $\sum \frac{n^{3}}{3^{n}}$

Root test:
$\left|a_{n}\right|^{\frac{1}{n}}=\left|\frac{n^{3}}{3^{n}}\right|^{\frac{1}{n}}=\frac{n^{\frac{3}{n}}}{3}$
$\lim \sup n^{\frac{3}{n}}=\lim n^{\frac{3}{n}}=\lim n^{\frac{1}{n}} * \lim n^{\frac{1}{n}} * \lim n^{\frac{1}{n}}=1 * 1 * 1=1$
$R=\frac{1}{3}<1$
Converges
e) $\sum \frac{n^{2}}{n!}$

Ratio test:
$\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{(n+1)^{2} n!}{(n+1)!n^{2}}\right|=\left|\frac{n+1}{n^{2}}\right|$
$\limsup \left|\frac{n+1}{n^{2}}\right|=\lim \left|\frac{n+1}{n^{2}}\right|=0$
$R=0<\infty$
Converges
f) $\sum \frac{1}{n^{n}}$

Root test:
$\left|a_{n}\right|^{\frac{1}{n}}=\left|\frac{1^{\frac{1}{n}}}{n}\right|=\left|\frac{1}{n}\right|$
$\limsup \frac{1}{n}=0$
$R=0<1$
Converges
g) $\sum \frac{n}{2^{n}}$

Root test:
$\left|a_{n}\right|^{\frac{1}{n}}=\left|\frac{n}{2^{n}}\right|^{\frac{1}{n}}=\frac{n^{\frac{1}{n}}}{2}$
$\limsup n^{\frac{1}{n}}=1$
$R=\frac{1}{2}<1$
Converges

Problem 14.10

What is a series where the root test gives information whereas the ratio test does not.

Solution

$$
\begin{aligned}
& \sum 3^{-1^{n}-n} \\
& \left|\frac{a_{n+1}}{a_{n}}\right|:
\end{aligned}
$$

for even n :
$=\frac{3^{-1-n-1}}{3^{1-n}}=\frac{1}{27}$
for odd n :
$=\frac{3^{1-n-1}}{3^{-1-n}}=3$
$\frac{1}{27}=\liminf R<1<\limsup R=3$
Ratio test is inconclusive
$\left|a_{n}\right|^{\frac{1}{n}}$:
for even n :
$3^{\frac{1}{n}-1}$
for odd n :
$3^{-\frac{1}{n}-1}$
$\lim 3^{\frac{1}{n}-1}=3^{-\frac{1}{n}-1}=\frac{1}{3}<1$
Converges by Root test

Problem 6

investigate convergence or divergence of $\sum a_{n}$

Solution

a) $a_{n}=\sqrt{n+1}-\sqrt{n}$

Diverges
Writing out the first terms of the series, we can identify it as a telescoping series.
$(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+(\sqrt{4}-\sqrt{3}) \ldots(\sqrt{N+1}-\sqrt{N})$
Which simplifies to the following via a rearrangement:
$-\sqrt{1}+\sqrt{N+1}$
The sum diverges to infinity as N approaches infinity, so the series itself does not converge.
b) $a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}$
rewrite the series:
$\frac{\sqrt{n+1}-\sqrt{n}}{n} * \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{n(\sqrt{n+1}+\sqrt{n})}<\frac{1}{n * 2 \sqrt{n}}=\frac{1}{2 * n^{\frac{3}{2}}}$
The right of the inequality is a p-series with $\mathrm{p} i 1$, which converges by the following integral test:
$\int_{1}^{\infty} \frac{1}{2 * n^{\frac{3}{2}}} d n=\left.\frac{-1}{n^{\frac{1}{2}}}\right|_{1} ^{\infty}=-0+1=1$
Thus, the series is strictly less than a convergent series and by the comparison test the series a_{n} converges.
c) $a_{n}=(\sqrt[n]{n}-1)^{n}$

Root test:
$\alpha=\lim \sup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim \sup _{n \rightarrow \infty} \sqrt[n]{n}-1$
$\limsup _{n \rightarrow \infty} \sqrt[n]{n}-1=\left(\limsup _{n \rightarrow \infty} \sqrt[n]{n}\right)-1=1-1=0$
$\alpha=0<1$

Thus, by the root test the series converges.
d) $a_{n}=\frac{1}{1+z^{n}}$; for complex values of z

Problem 7

Prove that the convergence of $\sum a_{n}$ implies the convergence of $\sum \frac{a_{n}}{n}$ if $a_{n} \geq 0$

Solution If $a_{n}>0$, then $a_{n}>\frac{a_{n}}{n} \forall n$
This implies:
$\sum a_{n}>\sum \frac{a_{n}}{n}$
By the comparison test, since $\sum a_{n}$ converges, $\sum\left|a_{n}\right|$ converges,
$\sum \frac{a_{n}}{n}<\sum\left|a_{n}\right|$ implies
$\frac{a_{n}}{n}$ converges

Problem 9

Find the radius of convergence of each of the following power series

Solution

a) $\sum n^{3} z^{n}$
$\alpha=\limsup \left|n^{3}\right|^{\frac{1}{n}}=\left|n^{\frac{3}{n}}\right|=|\sqrt[n]{n}|=|\sqrt[n]{n}| *|\sqrt[n]{n}| *|\sqrt[n]{n}|$ $|\sqrt[n]{n}|$ is convergent to 1 , thus the following is true:
$\alpha=1 * 1 * 1=1$
$R=1$
b) $\sum \frac{2^{n}}{n!} z^{n}$
$\alpha=\lim \sup \left|\frac{2^{n}}{n!}\right|^{\frac{1}{n}}=\lim \sup |2| *\left|\frac{1}{n!\frac{1}{n}}\right|=2 * \lim \sup \left|\frac{1}{n!^{\frac{1}{n}}}\right|$
$\lim n!^{\frac{1}{n}}=\infty$
$\lim \sup \left|\frac{1}{n!^{\frac{1}{n}}}\right|=0$
$\alpha=2 * 0=0$
$R=\infty$
c) $\sum \frac{2^{n}}{n^{2}} z^{n}$
$\alpha=\lim \sup \left|\frac{2^{n}}{n^{2}}\right|^{\frac{1}{n}}=\lim \sup |2| *\left|\frac{1}{n^{\frac{2}{n}}}\right|=2 * 1=2$
$R=\frac{1}{2}$
d) $\sum \frac{n^{3}}{3^{n}} z^{n}$
$\alpha=\lim \sup \left|\frac{n^{3}}{3^{n}}\right|^{\frac{1}{n}}=\lim \sup \left|\frac{1}{3}\right| *\left|n^{\frac{3}{n}}\right|=\frac{1}{3} * 1 * 1 * 1=\frac{1}{3}$
$R=3$

Problem 11

Suppose $a_{n}>0, s_{n}=a_{1}+\ldots+a_{n}, \sum a_{n}$ diverges

Solution

a) Prove that $\sum \frac{a_{n}}{1+a_{n}}$ diverges

We can use the contrapositive of the sanity check.
Since a_{n} is positive and divergent,
$\lim _{n->\infty} \frac{a_{n}}{1+a_{n}}=1$
Since the limit of the terms is not 0 , then the series must diverge.
b) Prove that
$\frac{a_{N+1}}{s_{N+1}}+\frac{a_{N+k}}{s_{N+k}} \geq 1-\frac{s_{N}}{s_{N+k}}$
and deduce that $\sum \frac{a_{n}}{s_{n}}$ diverges
c) Prove that
$\frac{a_{n}}{s_{n}^{2}} \leq \frac{1}{s_{n-1}}-\frac{1}{s_{n}}$
and deduce that $\sum \frac{a_{n}}{s_{n}^{2}}$ converges.
d) What can be said about
$\sum \frac{a_{n}}{1+n * a_{n}}$
and
$\sum \frac{a_{n}}{1+n^{2} * a_{n}}$

