Problem 1

In class, we proved that $[0,1]$ is sequentially compact, can you prove that $[0,1]^{2} \in \mathbb{R}$ is sequentially compact? (In general, if metric space X and Y are sequentially compact, we can show that $\mathrm{X} \times \mathrm{Y}$ is sequentially compact.

Solution We know from lecture that $[0,1]$ is compact because it is a closed and bounded. By the Bolzano Weierstrass theorem, this implies that each point $p \in[0,1]$ is a convergent sub-sequence $\left(p_{n}\right)$.

We want to show that a similar notion of sequential compactness holds in 2 dimensions.
Take any point $[i, j] \in[0,1]^{2}$
We know that individually, there must be convergent sub-sequences that approach any point in $[0,1]$.
Define the sub-sequences in singular dimensions
$\exists N_{i} s . t . \forall n>N_{i}, d\left(\left[u_{n}, 0\right],[u, 0]\right)<\frac{\epsilon}{2}$
$\exists N_{j} s . t . \forall n>N_{j}, d\left(\left[0, v_{n}\right],[0, v]\right)<\frac{\epsilon}{2}$
If we take $\bar{N}=\max \left(N_{i}, N_{j}\right)$, then the following pair must hold.
$\forall n>\bar{N}, d\left(\left[u_{n}, v_{n}\right],[u, v]\right)<d\left(\left[u_{n}, 0\right],[u, 0]\right)+d\left(\left[0, v_{n}\right],[0, v]\right)=\epsilon$
Then, for any point in $[0,1]^{2}$
$\left[u_{n}, v_{n}\right] \rightarrow[u, v]$

Problem 2

Let E be the set of points $x \in[0,1]$ whose decimal expansion consist of only 4 and 7 (e.g. 0.4747744 is allowed), is E countable? is E compact?

Solution Assume that E is finite, then we can enumerate every number $p \in E$ in the following way.
$p_{i}=\sum_{i=1}^{n} \frac{4}{10^{i}}$
$p_{1}=0.4$
$p_{2}=0.44$
If we have enumerated all finitely many n of them, $p_{1} \ldots p_{n}$
We can always construct one that is not enumerated by taking $p_{n+1} \in E$
Thus, E is not countable.
For compactness,
We can show that through the proving E is closed and using Heine-Borel.
We proceed by observing that the complement E^{c} is an open set.
E^{c} is the set of all numbers that are not purely digits of 4's and 7's
Prove E^{c} is open.
We can define a valid definition of E^{c} :
Let us first define a useful set of open intervals that 'fills in the gaps' of E.
$U=\bigcup_{i} U_{i}$
order the numbers in \tilde{E} :
($0.4,0.44,0 . \overline{4}, \ldots 0 . \overline{7}$
in between every element of E, there is a open interval we can place such that no element of E is withing
U_{i}. Since we can have an infinite amount of these intervals, we can account for any granuality of E .
$U_{i}=\left(\tilde{E}_{i}, \tilde{E}_{i+1}\right)$
$E^{c}=(0,0.4) \bigcup(0.7,1) \bigcup U$ is an open interval
Thus, E is closed.
E is compact.

Problem 3

Let A_{1}, A_{2}, \cdots be subset of a metric space. If $B=\cup_{i} A_{i}$, then $\bar{B} \supset \cup_{i} \bar{A}_{i}$. Is it possible that this inclusion is an strict inclusion?

Solution

Take A to be the following set of covers
$A_{i}=(1 / i, 1)$
taking the infinite union of all the subsets, we will construct B as the following:
$B=\bigcup_{i} A_{i}=(0,1)$
Taking the closure of this infinite set B,
$\bar{B}=[0,1]$
This closure contains right end point of 0 ,
However, there can not be a closure of A that can contain 0 .
$\forall i,\{0\} \bigcap[1 / i, 1]=\emptyset$
We have a point in \bar{B} that is not in $\bigcup_{i} A_{i}=(0,1)$, thus showing that the subset is strict in this case.

Problem 4

Last time, we showed that any open subset of \mathbb{R} is a countable disjoint union of open intervals. Here is a claim and argument about closed set: every closed subset of \mathbb{R} is a countable union of closed intervals. Because every closed set is the complement of an open set, and adjacent open intervals sandwich a closed interval. Can you see where the argument is wrong? Can you give an example of a closed set which is not a countable union of closed intervals? (here countable include countably infinite and finite)

Solution Take the set of real numbers R, which is a subset of R. We know that by definition, R itself is closed in R trivially because it contains all the limit points in R . However, we also know that R is not countable.

No matter how many closed intervals we use to try and cover R , we can not fully reconstruct R using a union of finite closed intervals.

Take any finite set of intervals U. $\forall i, U_{i}=[i, i]$
The union of all the intervals is just the largest interval since the U_{i+1} interval is a strict subset of the U_{i}
$\bigcup U_{i}=U_{\max (i)}$
There exists a real number $i+\epsilon$ that exists outside of this union. Thus, we can not cover R using a finite set of closed intervals.

