Problem 1

If X and Y are open cover compact, can you prove that $X \times Y$ is open cover compact? (try to do it directly, without using the equivalence between open cover compact and sequential compact)

Solution Let us define what X and Y being open cover compact tells us.

Any open cover of X and Y must admit a finite subcover.

Let $X \subseteq \bigcup_i U_i, Y \subseteq \bigcup_i V_j$

We can write a very large cover of this space by taking increasingly large open balls over one axis.

 $X \times Y \subseteq \{(a,b) | a \in X, b \in Y\}$

Using the fact that Y is compact, we can rewrite the above arbitrary cover using a finite cover. For some finitely large 1 < j < J,

 $X\times Y\subseteq \bigcup_a\{(a,v)|v\in \bigcup_1^J V_j\}, a\in X$

Since a is any arbitrary element of X, by X being compact we know that we can admit a finite open cover that contains all elements a in X. Thus, the largest that $\bigcup_a \{(a, v) | v \in \bigcup_1^J V_j\} a \in X$ is still finite. For a finitely large 1 < i < I

 $\bigcup_{a} \{(a,v) | v \in \bigcup_{1}^{J} V_{j}\} \subseteq \bigcup_{i,j} \{(u,v) | u \in \bigcup_{1}^{I} U_{i}, v \in \bigcup_{1}^{J} V_{j}\}$ $X \times Y \subseteq \bigcup_{i,j} \{(u,v) | u \in \bigcup_{1}^{I} U_{i}, v \in \bigcup_{1}^{J} V_{j}\}$

since both $\bigcup_{i=1}^{I} U_i, \bigcup_{i=1}^{J} V_j$ are finite unions of sets, then their union is also finite and thus any arbitrary cover of $X \times Y$ is a subcover of a finite cover which makes them also finite covers.

Problem 2

Let $f : X \to Y$ be a continuous map between metric spaces. Let $A \in X$ be a subset. Decide if the followings are true or not. If true, give an argument, if false, give a counter-example.

if A is open, then f(A) is open

if A is closed, then f(A) is closed.

if A is bounded, then f(A) is bounded.

if A is compact, then f(A) is compact.

if A is connected, then f(A) is connected.

Solution

1. if A is open, then f(A) is open

False: $A = \mathbb{R}, f(x) = c$

If we map all the real numbers to a constant, then this is not open in Y since it is a single point and any ball we draw around c will have points that are not in f(A) but are in Y.

2. if A is closed, then f(A) is closed.

False: $A = [0, 1], f(x) = \frac{1}{n}$

f(x)'s image $(-\infty, 1]$ does not contain the left limit point of f(x).

3. if A is bounded, then f(A) is bounded.

False: $A = [0, 1], f(x) = \frac{1}{n}$

f(x)'s image $(-\infty, 1]$ does not have a lower bound.

4. if A is compact, then f(A) is compact.

True: Take A that is sequentially compact and thus every sequence has a convergent subsequence.

Take the elements $a_n \to a$. Since the sequence converges to a, there are infinitely many a_n that are within ϵ of a.

By continuity, f(a) must have infinitely many points $f(a_n)$ that are within δ of f(a). This creates a convergent sequence in f(a), thus showing that f(A) is sequentially compact.

5. if A is connected, then f(A) is connected.

True: Let us assume that A is connected but f(A) is not connected.

This means that f(A) can be written as the disjoint union $f(A_L) \bigsqcup f(A_R)$.

Pulling $f(A_L)$, $f(A_R)$ through the inverse function, $A = A_L \bigsqcup A_R$. This means that A is not connected. Thus, we have a contradiction.

Problem 3

Prove that, there is not continuous map $f : [0, 1] \to \mathbb{R}$, such that f is surjective. (there is a surjective map from $(0, 1) \to \mathbb{R}$ though)

Solution Surjective: onto or maps to all elements in \mathbb{R}

To prove this, we can just show that there exists an element in \mathbb{R} that is not mapped to from [0, 1] by f. A key thing to notice is that the set that the pre-image belongs to is bounded. By this bound, we know that there does exists a way to construct some kind of element that lies outside of our pre-image. Let $p = 1 + \delta$

Since the distance between p and the right endpoint is within δ , continuity requires us to have a point in our image such that:

 $d(f(x), f(p)) \le \epsilon$

However, f(p) can not be in our image if it is outside of our pre-image.

We can not take the distance between two points that are not both in our image. Thus, this leads to a contradiction.