Problem 1

If X and Y are open cover compact, can you prove that $X \times Y$ is open cover compact? (try to do it directly, without using the equivalence between open cover compact and sequential compact)

Solution Let us define what X and Y being open cover compact tells us.
Any open cover of X and Y must admit a finite subcover.
Let $X \subseteq \bigcup_{i} U_{i}, Y \subseteq \bigcup_{j} V_{j}$
We can write a very large cover of this space by taking increasingly large open balls over one axis.
$X \times Y \subseteq\{(a, b) \mid a \in X, b \in Y\}$
Using the fact that Y is compact, we can rewrite the above arbitrary cover using a finite cover. For some finitely large $1<j<J$,
$X \times Y \subseteq \bigcup_{a}\left\{(a, v) \mid v \in \bigcup_{1}^{J} V_{j}\right\}, a \in X$
Since a is any arbitrary element of X , by X being compact we know that we can admit a finite open cover that contains all elements a in X . Thus, the largest that $\bigcup_{a}\left\{(a, v) \mid v \in \bigcup_{1}^{J} V_{j}\right\} a \in X$ is still finite. For a finitely large $1<i<I$
$\bigcup_{a}\left\{(a, v) \mid v \in \bigcup_{1}^{J} V_{j}\right\} \subseteq \bigcup_{i, j}\left\{(u, v) \mid u \in \bigcup_{1}^{I} U_{i}, v \in \bigcup_{1}^{J} V_{j}\right\}$
$X \times Y \subseteq \bigcup_{i, j}\left\{(u, v) \mid u \in \bigcup_{1}^{I} U_{i}, v \in \bigcup_{1}^{J} V_{j}\right\}$
since both $\bigcup_{1}^{I} U_{i}, \bigcup_{1}^{J} V_{j}$ are finite unions of sets, then their union is also finite and thus any arbitrary cover of $X \times Y$ is a subcover of a finite cover which makes them also finite covers.

Problem 2

Let $f: X \rightarrow Y$ be a continuous map between metric spaces. Let $A \in X$ be a subset. Decide if the followings are true or not. If true, give an argument, if false, give a counter-example.
if A is open, then $f(A)$ is open
if A is closed, then $f(A)$ is closed.
if A is bounded, then $f(A)$ is bounded.
if A is compact, then $f(A)$ is compact.
if A is connected, then $f(A)$ is connected.

Solution

1. if A is open, then $f(A)$ is open

False: $A=\mathbb{R}, f(x)=c$
If we map all the real numbers to a constant, then this is not open in Y since it is a single point and any ball we draw around c will have points that are not in $f(A)$ but are in Y.
2. if A is closed, then $f(A)$ is closed.

False: $A=[0,1], f(x)=\frac{1}{n}$
$f(x)$'s image $(-\infty, 1]$ does not contain the left limit point of $f(x)$.
3. if A is bounded, then $f(A)$ is bounded.

False: $A=[0,1], f(x)=\frac{1}{n}$
$f(x)$'s image $(-\infty, 1]$ does not have a lower bound.
4. if A is compact, then $f(A)$ is compact.

True: Take A that is sequentially compact and thus every sequence has a convergent subsequence.
Take the elements $a_{n} \rightarrow a$. Since the sequence converges to a, there are infinitely many a_{n} that are within ϵ of a.

By continuity, $f(a)$ must have infinitely many points $f\left(a_{n}\right)$ that are within δ of $f(a)$. This creates a convergent sequence in $f(a)$, thus showing that $f(A)$ is sequentially compact.
5. if A is connected, then $f(A)$ is connected.

True: Let us assume that A is connected but $f(A)$ is not connected.
This means that $\mathrm{f}(\mathrm{A})$ can be written as the disjoint union $f\left(A_{L}\right) \bigsqcup f\left(A_{R}\right)$.
Pulling $f\left(A_{L}\right), f\left(A_{R}\right)$ through the inverse function, $A=A_{L} \bigsqcup A_{R}$. This means that A is not connected. Thus, we have a contradiction.

Problem 3

Prove that, there is not continuous map $f:[0,1] \rightarrow \mathbb{R}$, such that f is surjective. (there is a surjective map from $(0,1) \rightarrow \mathbb{R}$ though)

Solution Surjective: onto or maps to all elements in \mathbb{R}
To prove this, we can just show that there exists an element in \mathbb{R} that is not mapped to from $[0,1]$ by f .
A key thing to notice is that the set that the pre-image belongs to is bounded. By this bound, we know that there does exists a way to construct some kind of element that lies outside of our pre-image. Let $p=1+\delta$

Since the distance between p and the right endpoint is within δ, continuity requires us to have a point in our image such that:
$d(f(x), f(p)) \leq \epsilon$
However, $f(p)$ can not be in our image if it is outside of our pre-image.
We can not take the distance between two points that are not both in our image. Thus, this leads to a contradiction.

