Problem 1

Let $f_n(x) = \frac{n + \sin x}{2n + \cos n^2 x}$, show that f_n converges uniformly on \mathbb{R} .

Solution

Definition of uniform convergence: For every $\epsilon > 0$, there exists a $n \ge N$ such that:

$$|f_n(x) - f(x)| \le \epsilon$$

Let $f(x) = \frac{1}{2}$

Taking a closer look at, $f_n(x)$, we can realize that it is upper bounded by a much simpler function

$$\frac{n+\sin x}{2n+\cos n^2 x} \le \frac{n+1}{2n}$$

Which leads us to the following inequality for ϵ

$$|f_n(x) - f(x)| = |\frac{n+1}{2n} - \frac{1}{2}| = |\frac{1}{2n}| \le \epsilon$$

Choosing $N=\frac{1}{2\epsilon}$ will satisfy the definition of uniform convergence.

Problem 2

Let $f(x) = \sum_{n=1}^{\infty} a_n x^n$. Show that the series is continuous on [-1, 1] if $\sum_n |a_n| < \infty$. Prove that $\sum_{n=1}^{\infty} n^{-2} x^n$ is continuous on [-1, 1].

Solution

1. We know that $\sum |a_n| < \infty$, so we can use the Weierstrass M-test.

 $|f_n(x)| = |a_n x^n| = |a_n| * |x^n| \le |a_n| \forall x \le 1$

Thus, $f(x) = \sum f_n(x)$ converges uniformly.

By theorem 7.12 in Rudin, this is sufficient to show that f is continuous.

2. The above case covers the case for $a_n = n^{-2}$ because $\sum n^{-2}$ is convergent.

Intergral test:

$$\int_{1}^{\infty} n^{-2} dx = -n^{-1} |_{1}^{\infty} = \left(\frac{-1}{\infty} + \frac{1}{1} \right) = 1$$

Problem 3

Show that $f(x) = \sum_{n} x^{n}$ represent a continuous function on (-1, 1), but the convergence is not uniform. (Hint: to show that f(x) on (-1, 1) is continuous, you only need to show that for any 0 < a < 1, we have uniform convergence on [-a, a]. Use Weierstrass M-test.)

Solution We want to prove continuity, but show that the convergence is not uniform.

For just continuity, using the Weierstrass M-test,

Verify that $\sum |a^n| = \frac{1}{1-a} < \infty$

It can be seen that $|x^n| \leq a^n$ for all $a \in (0,1), x \in (-a,a)$, and thus f(x) is a continuous function on (-1,1) since it converges uniformly (-a,a) for any aforementioned value of a.

Definition of uniform convergence:

for every $\epsilon > 0$, there exists an integer N such that $n \ge N$ implies $|f_n(x) - f(x)| \le \epsilon, \forall x$

$$f_n(x) = \sum_{i=1}^n x^i, f(x) = \sum_{n=1}^\infty x^n$$
$$|f_n(x) - f(x)| = |\frac{x^{(1-x^n)}}{1-x} - \frac{x}{1-x}| = |\frac{x^{n+1}}{x+1}| \le \epsilon$$

However, if we set $\epsilon = 0.01$, then there exists a value x where the above is false.

$$x = 0.99, N = 1$$

Examples: $\left|\frac{0.99^2}{1.99}\right| > 0.01$

This directly shows that x_n is not uniformly convergent