Problem 1

Let $f_{n}(x)=\frac{n+\sin x}{2 n+\cos n^{2} x}$, show that f_{n} converges uniformly on \mathbb{R}.

Solution

Definition of uniform convergence: For every $\epsilon>0$, there exists a $n \geq N$ such that:
$\left|f_{n}(x)-f(x)\right| \leq \epsilon$
Let $f(x)=\frac{1}{2}$
Taking a closer look at, $f_{n}(x)$, we can realize that it is upper bounded by a much simpler function $\frac{n+\sin x}{2 n+\cos n^{2} x} \leq \frac{n+1}{2 n}$

Which leads us to the following inequality for ϵ
$\left|f_{n}(x)-f(x)\right|=\left|\frac{n+1}{2 n}-\frac{1}{2}\right|=\left|\frac{1}{2 n}\right| \leq \epsilon$
Choosing $N=\frac{1}{2 \epsilon}$ will satisfy the definition of uniform convergence.

Problem 2

Let $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$.
Show that the series is continuous on $[-1,1]$ if $\sum_{n}\left|a_{n}\right|<\infty$.
Prove that $\sum_{n=1}^{\infty} n^{-2} x^{n}$ is continuous on $[-1,1]$.

Solution

1. We know that $\sum\left|a_{n}\right|<\infty$, so we can use the Weierstrass M-test.
$\left|f_{n}(x)\right|=\left|a_{n} x^{n}\right|=\left|a_{n}\right| *\left|x^{n}\right| \leq\left|a_{n}\right| \forall x \leq 1$
Thus, $f(x)=\sum f_{n}(x)$ converges uniformly.
By theorem 7.12 in Rudin, this is sufficient to show that f is continuous.
2. The above case covers the case for $a_{n}=n^{-2}$ because $\sum n^{-2}$ is convergent.

Intergral test:
$\int_{1}^{\infty} n^{-2} d x=-\left.n^{-1}\right|_{1} ^{\infty}=\left(\frac{-1}{\infty}+\frac{1}{1}\right)=1$

Problem 3

Show that $f(x)=\sum_{n} x^{n}$ represent a continuous function on $(-1,1)$, but the convergence is not uniform.
(Hint: to show that $f(x)$ on $(-1,1)$ is continuous, you only need to show that for any $0<a<1$, we have uniform convergence on $[-a, a]$. Use Weierstrass M-test.)

Solution We want to prove continuity, but show that the convergence is not uniform.
For just continuity, using the Weierstrass M-test,
Verify that $\sum\left|a^{n}\right|=\frac{1}{1-a}<\infty$
It can be seen that $\left|x^{n}\right| \leq a^{n}$ for all $a \in(0,1), x \in(-a, a)$, and thus $f(x)$ is a continuous function on $(-1,1)$ since it converges uniformly $(-a, a)$ for any aforementioned value of a.

Definition of uniform convergence:
for every $\epsilon>0$, there exists an integer N such that $n \geq N$ implies $\left|f_{n}(x)-f(x)\right| \leq \epsilon, \forall x$
$f_{n}(x)=\sum_{i=1}^{n} x^{i}, f(x)=\sum_{n=1}^{\infty} x^{n}$
$\left|f_{n}(x)-f(x)\right|=\left|\frac{x\left(1-x^{n}\right)}{1-x}-\frac{x}{1-x}\right|=\left|\frac{x^{n+1}}{x+1}\right| \leq \epsilon$
However, if we set $\epsilon=0.01$, then there exists a value x where the above is false.
$x=0.99, N=1$
Examples: $\left|\frac{0.99^{2}}{1.99}\right|>0.01$
This directly shows that x_{n} is not uniformly convergent

