Problem 1

Read Ross p257, Example 3 about smooth interpolation between 0 for $x \leq 0$ and $e^{-1 / x}$ for $x>0$.
Construct a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=0$ for $x \leq 0$ and $f(x)=1$ for $x \geq 1$, and $f(x) \in[0,1]$ when $x \in(0,1)$.

Solution So we want a function that fulfills the above requirements of being 0 for non-negative values of $\mathrm{x}, 1$ for values of x greater than 1 , and is smooth.

To be smooth, it's derivative must exist for all values of X.
Trivially, f is differentiable and smooth for values $x<0$ and $x>1$. This is because a constant function's derivative is identically 0 .

So, we also want our derivative to have a value of 0 as it approaches 0 from the left and 1 from the right.
$\lim _{x \rightarrow 0+} \frac{f^{(n)}(x)-f^{(n)}(0)}{x-0}=0$
$\lim _{x \rightarrow 1-} \frac{f^{(n)}(x)-f^{(n)}(1)}{x-1}=0$
After thinking for a long time, we can try a "middle function" of $e^{1-\frac{1}{x}}$
Verify that $f(1)=1, f(0)=0$
Let's verify the limit definition and show that the function is still smooth:
First, let's analyze the derivatives $f^{(n)}(x)$
We claim that for $f(x)=\frac{1}{x} e^{1-\frac{1}{x}}$, there exists a polynomial $p_{n}\left(\frac{1}{x}\right)$ such that
$f^{(n)}(x)=e^{1-\frac{1}{x}} * p_{n}\left(\frac{1}{x}\right)$
We see it is true for $\mathrm{n}=1, p_{n}(t)=t^{3}-t^{2}$. By a similar process to the book, we see that $p_{n}(x)$ is a degree 2 n polynomial.

Now, we proceed with the first requirement.
By a similar process to the book, at point 0 we can use the proven statement that $\lim _{x \rightarrow \infty} \frac{1}{x^{k}} e^{-x}=0$
$\lim _{x \rightarrow 0+} \frac{f^{(n)}(x)-f^{(n)}(0)}{x-0}=\lim _{x \rightarrow 0+} \frac{1}{x} * \frac{e^{1-\frac{1}{x}}}{x} * p_{n}\left(\frac{1}{x}\right)=e * \lim _{x \rightarrow 0+} e^{-\frac{1}{x}} * p_{n}\left(\frac{1}{x}\right)=0$
Now for the second requirement at 1 . This is newer but we can try.
$\lim _{x \rightarrow 1-} \frac{f^{(n)}(x)-f^{(n)}(1)}{x-1}=\frac{1}{x-1}\left(\frac{e^{1-\frac{1}{x}}}{x} p_{n}\left(\frac{1}{x}\right)-1\right)$
Since $\frac{1}{x-1}$ approaches ∞, we can use L'hopital's rule.
$=\lim _{x \rightarrow 1-} \frac{e^{1-\frac{1}{x}}}{x} p_{n+1}\left(\frac{1}{x}\right)$
After realizing we have made a function that is not smooth, we consult our peers for a different candidate function.

Apparently taking the function provided by Rudin $f(x)=e^{-\frac{1}{x}} ; x>0$ and doing the following works: $\frac{f(x)}{f(x)+f(1-x)}$
They also justify that the function is smooth since it is a composition of other smooth functions.

Problem 2

Rudin Ch 5, Ex 4 (hint: apply Rolle mean value theorem to the primitive)

Solution We want to prove that if $C_{0}+\frac{C_{1}}{2}+\ldots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0$
Then,
$f(x)=C_{0}+C_{1} x+\ldots C_{n} x^{n}=0$ has at least 1 real root between 0 and 1.
Well, let us construct an anti-derivative for the above equation. This function, we will call g , must equal 0 at $\mathrm{x}=0$ and $\mathrm{x}=1$.
$g(x)=C_{0} x+\frac{C_{1} x^{2}}{2}+\ldots+\frac{C_{n-1} x^{n}}{n}+\frac{C_{n} x^{n+1}}{n+1}$
For $\mathrm{x}=0$, we can see by substitution we will have a sum of all 0 terms since all terms have 0 .
For $\mathrm{x}=1$, we reconstruct the following:
$C_{0}+\frac{C_{1}}{2}+\ldots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}$
We are also given that the above also equals 0 .
Now, by Rolle's theorem we can say that the derivative of the function g has a value c where its derivative, $g^{\prime}(c)$, equals 0

We know that if we take the derivative, we obtain $f(x)$.
$g^{\prime}(x)=f(x)=C_{0}+C_{1} x+\ldots C_{n} x^{n}$
Thus, using $\mathrm{a}=0, \mathrm{~b}=1$, we have thus shown that there must exist a c s.t. $f(c)=0 \in[0,1]$

Problem 3

Rudin Ch 5, Ex 8 (ignore the part about vector valued function. Hint, use mean value theorem to replace the difference quotient by a differential)

Solution We are given that f^{\prime} 'is continuous on [a,b]. For a $\epsilon>0, \exists \delta>0$ s.t
$0<|t-x|<\delta, a \leq x \leq b, a \leq t \leq b$
and we want to show
$\left|\frac{f(t)-f(x)}{t-x}-f^{\prime}(x)\right| \leq \epsilon$
Using the mean value theorem, we know there exists a $c \in[t, x]$, wlog assume $t<x$ such that
$f^{\prime}(c)=\frac{f(t)-f(x)}{t-x}$
We also know that since $c \in[t, x]$ and $0<|t-x|<\delta$,
$|c-x|<\delta$
Using continuity of f^{\prime}, we know the corresponding images of x and c are within an epsilon distance of each other.

By continuity of f^{\prime}
$|c-x|<\delta \rightarrow\left|f^{\prime}(c)-f^{\prime}(x)\right| \leq \epsilon$

Problem 4

Rudin Ch 5, Ex 18 (alternative form for Taylor theorem)

Solution From differentiation, we get the following formula by induction:
$f^{n-1}(t)=(t-\beta) Q^{n-1}(t)+(n-1) Q^{n-2}(t)$
With the definition for the Taylor polynomial P around the point α :
$P_{\alpha}(x)=\sum_{k=0}^{n-1} \frac{f^{k}(\alpha)}{k!}(x-\alpha)^{k}+f(\alpha)$
Sub in:
$P_{\alpha}(\beta)=\sum_{k=0}^{n-1} \frac{(\alpha-\beta) Q^{k}(\alpha)+k Q^{k-1}(\alpha)}{k!}(\beta-\alpha)^{k}+f(\alpha)$
Split the parts of the sum:
$=\sum_{k=0}^{n-1} \frac{(\beta-\alpha)^{k} Q^{k-1}(\alpha)}{(k-1)!}-\frac{(\beta-\alpha)^{k+1} Q^{k}(\alpha)}{k!}+f(\alpha)$
The second term will always be canceled out by the previous first term, leaving us with the following by the end:
$=(\beta-\alpha) Q(a)+\frac{(\beta-\alpha)^{n} Q^{n-1}(\alpha)}{(n-1)!}+f(\alpha)$
Simplify:
$P_{\alpha}(\beta)=f(\beta)-\frac{(\beta-\alpha)^{n} Q^{n-1}(\alpha)}{(n-1)!}$
Thus:
$f(\beta)=P_{\alpha}(\beta)+\frac{(\beta-\alpha)^{n} Q^{n-1}(\alpha)}{(n-1)!}$

Problem 4

Rudin Ch 5, Ex 22

Solution

1. Suppose there were two such fixed points a, b

Since f is differentiable, by the mean value theorem there must exist a $c \in[a, b]$
such that
$f^{\prime}(c)=\frac{f(a)-f(b)}{a-b}=\frac{a-b}{a-b}=1$
However, this contradicts our assumption. Thus, there can be no more than 1 fixed point on f .
2. f has no fixed point because every item t is strictly greater than its corresponding fixed point $f(t)$.

For a point t to be a fixed point,
$f(t)=t+\frac{1}{1-e^{t}}=t$
which implies $\frac{1}{1+e^{t}}=0$
but $\frac{1}{1+e^{t}}$ never realizes 0 .
3. We know that for f to have a fixed point, $f(x)=x$

We proceed by first showing that x_{n} converges because it is cauchy.
We are given that $\left|f^{\prime}(t)\right| \leq A<1$
Taking one step in our algorithm, we see that we can bound the distance between our $\left(x_{n}, x_{n+1}\right)$
$\left|f^{\prime}(t)\right|=\left|\frac{f\left(x_{n}\right)-f\left(x_{n+1}\right)}{x_{n}-x_{n+1}}\right|<1$
$f\left(x_{n}\right)-f\left(x_{n+1}\right) \leq x_{n}-x_{n+1}$
We know that the distance between each pair in each subsequent step of our algorithm must decrease by induction. x_{n} is cauchy.

We will call the convergent point x .
$\lim x_{n}=x$
Since $f\left(x_{n}\right)=x_{n+1}, f\left(x_{n}\right)$ is a subsequence because it is just the continuation of x_{n} which must also converge to x .
$\lim f\left(x_{n}\right)=\lim x_{n+1}=x$
4. Starting a $\left(x_{1}, f\left(x_{1}\right)\right)=\left(x_{1}, x_{2}\right)$
moving from $\left(x_{1}, x_{2}\right) \rightarrow\left(x_{2}, x_{2}\right)$ is fine since
$\frac{f\left(x_{2}\right)-f\left(x_{2}\right)}{x_{2}-x_{2}}=0<1$
$\left(x_{2}, x_{2}\right)$ onwards is similar

