
Minh Phan Homework 3 Math 104

Problem 1

Read Ross p257, Example 3 about smooth interpolation between 0 for x ≤ 0 and e−1/x for x > 0.

Construct a smooth function f : R → R such that f(x) = 0 for x ≤ 0 and f(x) = 1 for x ≥ 1, and

f(x) ∈ [0, 1] when x ∈ (0, 1).

Solution So we want a function that fulfills the above requirements of being 0 for non-negative values

of x, 1 for values of x greater than 1, and is smooth.

To be smooth, it’s derivative must exist for all values of X.

Trivially, f is differentiable and smooth for values x < 0 and x > 1. This is because a constant function’s

derivative is identically 0.

So, we also want our derivative to have a value of 0 as it approaches 0 from the left and 1 from the right.

limx→0+
f(n)(x)−f(n)(0)

x−0 = 0

limx→1−
f(n)(x)−f(n)(1)

x−1 = 0

After thinking for a long time, we can try a ”middle function” of e1−
1
x

Verify that f(1) = 1, f(0) = 0

Let’s verify the limit definition and show that the function is still smooth:

First, let’s analyze the derivatives f (n)(x)

We claim that for f(x) = 1
xe

1− 1
x , there exists a polynomial pn(

1
x ) such that

f (n)(x) = e1−
1
x ∗ pn( 1x )

We see it is true for n = 1, pn(t) = t3 − t2. By a similar process to the book, we see that pn(x) is a

degree 2n polynomial.

Now, we proceed with the first requirement.

By a similar process to the book, at point 0 we can use the proven statement that limx→∞
1
xk e

−x = 0

limx→0+
f(n)(x)−f(n)(0)

x−0 = limx→0+
1
x ∗ e1−

1
x

x ∗ pn( 1x ) = e ∗ limx→0+ e−
1
x ∗ pn( 1x ) = 0

Now for the second requirement at 1. This is newer but we can try.

limx→1−
f(n)(x)−f(n)(1)

x−1 = 1
x−1 (

e1−
1
x

x pn(
1
x )− 1)

Since 1
x−1 approaches ∞, we can use L’hopital’s rule.

= limx→1−
e1−

1
x

x pn+1(
1
x )

After realizing we have made a function that is not smooth, we consult our peers for a different candidate

function.

Apparently taking the function provided by Rudin f(x) = e−
1
x ;x > 0 and doing the following works:

f(x)
f(x)+f(1−x)

They also justify that the function is smooth since it is a composition of other smooth functions.
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Problem 2

Rudin Ch 5, Ex 4 (hint: apply Rolle mean value theorem to the primitive)

Solution We want to prove that if C0 +
C1

2 + ...+ Cn−1

n + Cn

n+1 = 0

Then,

f(x) = C0 + C1x+ ...Cnx
n = 0 has at least 1 real root between 0 and 1.

Well, let us construct an anti-derivative for the above equation. This function, we will call g, must equal

0 at x = 0 and x = 1.

g(x) = C0x+ C1x
2

2 + ...+ Cn−1x
n

n + Cnx
n+1

n+1

For x = 0, we can see by substitution we will have a sum of all 0 terms since all terms have 0.

For x = 1, we reconstruct the following:

C0 +
C1

2 + ...+ Cn−1

n + Cn

n+1

We are also given that the above also equals 0.

Now, by Rolle’s theorem we can say that the derivative of the function g has a value c where its derivative,

g′(c), equals 0

We know that if we take the derivative, we obtain f(x).

g′(x) = f(x) = C0 + C1x+ ...Cnx
n

Thus, using a = 0, b = 1, we have thus shown that there must exist a c s.t. f(c) = 0 ∈ [0, 1]

2



Minh Phan Homework 3 Math 104

Problem 3

Rudin Ch 5, Ex 8 (ignore the part about vector valued function. Hint, use mean value theorem to

replace the difference quotient by a differential)

Solution We are given that f’ is continuous on [a,b]. For a ϵ > 0,∃δ > 0 s.t

0 < |t− x| < δ, a ≤ x ≤ b, a ≤ t ≤ b

and we want to show

| f(t)−f(x)
t−x − f ′(x)| ≤ ϵ

Using the mean value theorem, we know there exists a c ∈ [t, x], wlog assume t < x such that

f ′(c) = f(t)−f(x)
t−x

We also know that since c ∈ [t, x] and 0 < |t− x| < δ,

|c− x| < δ

Using continuity of f ′, we know the corresponding images of x and c are within an epsilon distance of

each other.

By continuity of f ′

|c− x| < δ → |f ′(c)− f ′(x)| ≤ ϵ
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Problem 4

Rudin Ch 5, Ex 18 (alternative form for Taylor theorem)

Solution From differentiation, we get the following formula by induction:

fn−1(t) = (t− β)Qn−1(t) + (n− 1)Qn−2(t)

With the definition for the Taylor polynomial P around the point α:

Pα(x) =
∑n−1

k=0
fk(α)
k! (x− α)k + f(α)

Sub in:

Pα(β) =
∑n−1

k=0
(α−β)Qk(α)+kQk−1(α)

k! (β − α)k + f(α)

Split the parts of the sum:

=
∑n−1

k=0
(β−α)kQk−1(α)

(k−1)! − (β−α)k+1Qk(α)
k! + f(α)

The second term will always be canceled out by the previous first term, leaving us with the following by

the end:

= (β − α)Q(a) + (β−α)nQn−1(α)
(n−1)! + f(α)

Simplify:

Pα(β) = f(β)− (β−α)nQn−1(α)
(n−1)!

Thus:

f(β) = Pα(β) +
(β−α)nQn−1(α)

(n−1)!
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Problem 4

Rudin Ch 5, Ex 22

Solution

1. Suppose there were two such fixed points a,b

Since f is differentiable, by the mean value theorem there must exist a c ∈ [a, b]

such that

f ′(c) = f(a)−f(b)
a−b = a−b

a−b = 1

However, this contradicts our assumption. Thus, there can be no more than 1 fixed point on f.

2. f has no fixed point because every item t is strictly greater than its corresponding fixed point f(t).

For a point t to be a fixed point,

f(t) = t+ 1
1−et = t

which implies 1
1+et = 0

but 1
1+et never realizes 0.

3. We know that for f to have a fixed point,f(x) = x

We proceed by first showing that xn converges because it is cauchy.

We are given that |f ′(t)| ≤ A < 1

Taking one step in our algorithm, we see that we can bound the distance between our (xn, xn+1)

|f ′(t)| = | f(xn)−f(xn+1)
xn−xn+1

| < 1

f(xn)− f(xn+1) ≤ xn − xn+1

We know that the distance between each pair in each subsequent step of our algorithm must decrease

by induction. xn is cauchy.

We will call the convergent point x.

limxn = x

Since f(xn) = xn+1, f(xn) is a subsequence because it is just the continuation of xn which must also

converge to x.

lim f(xn) = limxn+1 = x

4. Starting a (x1, f(x1)) = (x1, x2)

moving from (x1, x2) → (x2, x2) is fine since

f(x2)−f(x2)
x2−x2

= 0 < 1

(x2, x2) onwards is similar
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