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Chapter 1
Differentiation

1.1 Differentiation and the Mean Value Theorem

Let f : [a, b] → R be a real valued function. Define ∀x ∈ [a, b]:

f ′(x) = lim
t→x

(
f(t)− f(x)

t− x

)
This limit may not exist for all points, and if it does, we say f is differentiable at x. We may
formalize this notion by defining a function gx, the difference quotient of f at x:

gx(t) =
f(t)− f(x)

t− x

Taking the limit of this function as t approaches x yields the derivative f ′(x).

Proposition 1

If f : [a, b] → R is differentiable at x0 ∈ [a, b], then f is continuous at x0.

Proof. We want to show that limx→x0 f(x)− f(x0) = 0. We have the following:

f(x)− f(x0) =
f(x)− f(x0)

x− x0
· (x− x0)

Taking limits, we see:

lim
x−x0

f(x)− f(x0) = lim
x→x0

f(x)− f(x0)

x− x0
· lim
x→x0

(x− x0) = f ′(0) · 0 = 0

Remark: If f(x) is differentiable at x0, we don’t necessarily maintain that f is continuous at points
close to x0. Consider:

f(x) =

{
x2 x ∈ Q
−x2 x ∈ R \Q

which is differentiable at 0 but is not continuous at any other point in R.
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Example 1: Given

f(x) =

{
x sin

(
1
x

)
x > 0

0 x ≤ 0

Does f ′(0) exist? Let’s construct left and right limits. If x ≥ 0, then:

g0(x) =
f(x)− f(0)

x
= sin

(
1

x

)
Observe that limt→0 g0(t) does not exist, and therefore f is not differentiable at 0.

Note that it’s possible for a function to be differentiable on all x ∈ R, but still be discontinuous at
some points. An example of such a function is

f(x) =

{
x sin

(
1
x

)
x > 0

0 x ≤ 0

After writing out the derivative, it’s pretty simple to check that f ′(x) does not converge to f ′(0) as
x → 0+.

Theorem 1: Properties of Derivatives

Let f, g : [a, b] → R given that f, g are differentiable at x0 ∈ [a, b], then:

1. ∀c ∈ R (cf)′(x0) = c(f ′(0)

2. (f + g)′(x0) = f ′(x0) + g′(x0)

3. (fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0)

4. If g(x0) ̸= 0, then
(

f
g

)′
(x0) =

f ′(x0)g(x0)−f(x0)g
′(x0)

g(x0)2

Proof. Proofs 1,2 are simple to check using the definition of the derivative. 4 is simple given 3 and
the chain rule (Theorem 2). We want to compute

lim
x→x0

(fg)(x)− (fg)(x0)

x− x0

We have that:

f(x)g(x)− f(x0)g(x0) = [f(x)− f(x0) + f(x0)] [g(x)− g(x0) + g(x0)]

= [f(x)− f(x0)] [g(x)− g(x0)] + [f(x)− f(x0)] g(x) + f(x0) [g(x)− g(x0)]

When we divide this entire expression by x− x0, the first term goes to 0, since we multiply f ′(x0)
by 0. The second term goes to f ′(x0)g(x0) after factoring out g(x0), and the last term goes to
f(x0)g

′(x0) after factoring out f(x0). We conclude that

lim
x→x0

(fg)(x)− (fg)(x0)

x− x0
= f ′(x0)g(x0) + f(x0)g

′(x0)
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Theorem 2: Chain Rule of Derivatives

Suppose f : [a, b] → R, and g : I → R, where I ⊆ R. Suppose for some x0 ∈ [a, b], such that
f(x0) = y0, and further suppose that f([a, b]) ⊆ I. Suppose that f ′(x0), g

′(y0) exist. Then
the composition h = g ◦ f : [a, b] → R is differentiable at x0, and h′(x0) = g′(y0)f

′(x0).

Proof. Since we have that f is differentiable at x0, and g is differentiable at y0, we have that:

f(x)− f(x0) = (x− x0)(f
′(x0) + U(x)) (1.1)

g(y)− g(y0) = (y − y0)(g
′(y0) + V (y)) (1.2)

Such that limx→x0 U(x) = limy→y0 V (y) = 0 We can write the following:

h(x)− h(x0) = g(f(x))− g(f(x0))

= (f(x)− f(x0))(g
′(f(x0) + V (f(x)))

= (x− x0)(f
′(x0) + U(x))(g′(f(x0)) + V (f(x)))

We find that

lim
x→x0)

h(x)− h(x0)

x− x0
= lim

x→x0

(f ′(x0) + U(x))(g′(f(x0)) + V (f(x)))

= f ′(x0)g
′(f(x0)) = g′(y0)f

′(x0)

Let f : [a, b] → R. We say f has a local maximum at p ∈ [a, b] if ∃ϵ > 0 such that ∀x ∈ [a, b]∩Bϵ(p),
we have f(x) ≤ f(p). Define a local minimum of f analogously.

Proposition 2

Let f : [a, b] → R. If f has a local max at p ∈ (a, b), and if f ′(p) exists, then f ′(p) = 0.

Before proving this, note that we only consider the open interval (a, b) because a function with
maxima at it’s endpoints may not have f ′(x) = 0. Likewise, it’s possible to have a function with a
maximum at p but not be differentiable at p (sharp edges and stuff).

Proof. Since p ∈ (a, b), ∃δ > 0 such that (p− δ, p+ δ) ⊆ [a, b], and f(p) is the max of the restriction
f
∣∣
(p−δ,p+δ)

. Consider difference quotient gp(x) for all x ∈ [a, b] \ {P}. The following two statements

must hold

If x ∈ (p−δ, δ), gp(x) ≥ 0 (numerator and denominator are negative), and therefore limx→p−gp(x) ≥
0.

If x ∈ (p, p+δ), gp(x) ≤ 0 (negative numerator, positive denominator), and therefore limx→p+gp(x) ≤
0.

Since f is differentiable at p, the limits must be equal, meaning that limx→pgp(x) = 0.
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1.2 Generalized Mean Value Theorem and L’Hopital’s Rule

Proposition 3: Rolle’s Theorem

Let f : [a, b] → R be a continuous function, that is differentiable on (a, b). If f(a) = f(b),
then ∃c ∈ (a, b) such that f ′(c) = 0

Proof. If f is a constant function, then f ′(c) = 0 for any c ∈ (a, b) (by definition of the derivative). If
f is nonconstant, then there is t ∈ (a, b) such that f(a) = f(b) ̸= f(t). WLOG, suppose f(t) > f(a).
Let x0 ∈ (a, b) be such that f(x0) is the maximum value of f([a, b]), which exists since f is surjective
onto it’s image, and it’s continuous.

Then f(x0) ≥ f(t) > f(a), which means x0 ̸= a ̸= b. By the earlier proposition x0 ∈ (a, b) is a local
maximum and therefore has derivative 0, so take c = x0. The proof works the same way for local
mins (in which case replace > with <, replace ≥ with ≤, etc).

Theorem 3: Generalized Mean Value Theorem

Let f, g : [a, b] → R be a continuous function that is differentiable on (a, b). Then ∃c ∈ (a, b)
such that:

[f(a)− f(b)]g′(c) = [g(a)− g(b)]f ′(c)

⇐⇒ [f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c)

Proof. Let h(x) := [f(a) − f(b)][g(x) − g(a)] − [f(x) − f(a)][g(a) − g(b)]. Note where we use in-
put x. We can observe that h(a) = 0 obviously, and h(b) = 0 since we’re subtracting 2 equal
things.Therefore, we can apply Rolle’s theorem to h(x), so there is c ∈ (a, b) where h′(c) = 0.

We compute:
h′(x) = [f(a)− f(b)]g′(x)− f ′(x)[g(a)− g(b)]

h′(c) = 0 =⇒ [f(a)− f(b)]g′(c) = f ′(c)[g(a)− g(b)]

Remark: In the special case that g(a) = f(a) and g(b) = f(b), we’re guaranteed a c such that
f ′(c) = g′(c), which is achieved when f(x)− g(x) has a local max/min.

Proposition 4

Let f [a, b] → R be continuous, and differentiable on (a, b). Then ∃c ∈ (a, b) such that:

[f(b)− f(a)] = (b− a)f ′(c))

Proof. Let g(x) = x and apply generalized mean value theorem.

A corollary of this is that if f is as above, and we have |f ′(x)| ≤ M for some constant M , then f
is uniformly continuous. This formalizes our earlier idea of uniformly continuous functions having a
bounded slope.
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Another corollary is that if we have f : [a, b] → R that is continuous everywhere and differentiable
on (a, b), if f ′(x) ≥ 0 ∀x ∈ (a, b) then f is monotone increasing. Furthermore, if f ′(x) > 0
∀x ∈ (a, b) then f is strictly increasing. The same argument applies to monotone and strictly
decreasing functions.

Theorem 4: Intermediate Value Theorem for Derivatives

Assume that f is differentiable on [a, b], with f ′(a) < f ′(b). Then for each M ∈ (f ′(a), f ′(b)),
there exists a c(a, b) such that M = f ′(c).

Proof. Let g(x) := f(x)−Mx. Then g′(a) = f ′(a)−M < 0, and g′(b) = f ′(b)−M > 0, so neither
are local minima (and thus not global minima). Let c be a global minimum of g on (a, b), then:

g′(c0 =⇒ f ′(c) = M

Now we get to L’Hopital’s rule, in which given a quotient of functions where plugging in our limit
value yields an indeterminate form, we want to find the limit value.

Theorem 5: L’Hopital’s Rule

Assume that f, g : (a, b) → R are differentiable, g(x) ̸= 0 on a, b. If either:

1. limx→a f(x) = 0 and limx→a g(x) = 0

2. limx→a f(x) = +∞

and if

lim
x→a

f ′(x)

g′(x)
= A ∈ R ∪ {−∞,+∞}

then we have

lim
x→a

f(x)

g(x)
= A ∈ R ∪ {−∞,+∞}

Proof. The proof is very hard uwu. For any ϵ > 0, ∃δ > 0 such that ∀x ∈ (a, a+ δ), we have that;∣∣∣∣f ′(x)

g′(x)
−A

∣∣∣∣ < ϵ ⇐⇒ A− ϵ <
f ′(x)

g′(x)
< A+ ϵ

Now for all α, β such that a < α < β < a+ δ, we have some γ ∈ (α, β) such that:

[f(β)− f(α)]g′(γ) = [g(β)− g′(α)]f ′(γ)

by the mean value theorem. This means:

f(β)− f(α)

g(β)− g(α)
=

f ′(γ)

g′(γ)
∈ (A− ϵ, A+ ϵ)

Suppose we are in case 1 of the theorem. Then we know that limα→a f(α) = 0 and limα→a g(α) = 0.
If we take the limit as α → a:

lim
α→a

f(β)− f(α)

g(β)− g(α)
=

f(β)

g(β
∈ (A− ϵ, A+ ϵ)
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If we like parse what we just did, for all ϵ > 0 we have found a δ > 0 such that ∀β ∈ (a, a+ δ) such

that f(β)
g(β) ∈ (A− ϵ, A+ ϵ), which is the definition that: limβ→a

β
g(β) = A.

Great so now what if we’re in case 2 of the theorem, in which limx→a f(x) = +∞. We pick
β ∈ (a, a+ δ, pick α ∈ (a, β) such that α is close enough to a thatL

g(α) > g(β) =⇒
(
g(α)− g(β)

g(α)

)
> 0

A− ϵ <
f(β)− f(α)

g(β)− g(α)
< A+ ϵ

=⇒ (A− ϵ)

(
g(α)− g(β)

g(α)

)
<

(
f(β)− f(α)

g(α)

)
< (A+ ϵ)

(
g(α)− g(β)

g(α)

)
If we take the limit as α → a, g(α)−g(β)

g(α) → 1. Therefore, we have that:

A− ϵ ≤ lim infα→a

(
f(β)− f(α)

g(α)

)
≤ lim supα→a

(
f(β)− f(α)

g(α)

)
≤ A+ ϵ

Take the limit as ϵ → 0 to get that limx→a
f(x)
g(x) = A

1.3 Higher Derivatives and Taylor Expansion

For continuous f : R → R, we say that f ∈ C0(R), and if f ′(x) exist for all x ∈ R, and f ′ is
continuous, we say that f ∈ C1(R). If f ′ is also differentiable, we can get

(f ′)′(x) = lim
ϵ→0

f ′(x+ ϵ)− f ′(x)

ϵ

We can denote this as f ′′(x) or f (2)(x). If this exists for all x, and is continous, then f ∈ C2(R).
We may extend this definition to C∞(R), as functions that are in Ck(R) for all k = 1, 2, ..., which
we may call ”smooth” or infinitely differentiable functions.

Example 2: Polynomials are smooth functions. f (k) exists and is also a polynomial. Therefore an
inductive argument shows that f ∈ C∞(R).

Example 3: Consider the piecewise defined function:

f(x) =

{
0 x ≤ 0

x2 x > 0

This function looks smooth when graphed, but if after taking the first derivative, we get a sharp
edge at x = 0 in which f ′′(0) jumps from 0 to 1.

Suppose we want to approximate a function at a point by creating a function with the same deriva-
tive. Consider

p(x) = a0 +
a1
1
x+

a2
1 · 2

x2 + · · ·+ an
n!

xn

p′(x) = 0 + a1 +
a2
1
x+

a3
1 · 2

x2 + · · ·+ an
(n− 1)!

xn−1

We note here that p(0) = a0, p
′(0) = a1, and p(k)(0) = ak. So there is a nice function such that it’s

value and kth derivative at x = 0 can be specified (note that x = 0 isn’t special, that takes values
at x = a)
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Define the n-th order Taylor expansion centered at a point as follows. Assume f : R → R is
a Cn function. Then we can use f(x0), f

′(x0), ..., f
n(x0) to create a polynomial:

Px0
(x) = f(x0) + f ′(x0)

x

1
+ · · ·+ fn(x0)

(x− x0)
n

n!

Note that P
(k)
x0 (x) = f (k)(x0).

Theorem 6: Taylor’s Theorem

Suppose f : R → R ∈ Cn(R), and f (n)(x) exists (but may not be continuous). Let Px0(x) be
the n-th order Taylor approximation of f at x0.

Then ∀x ∈ R, ∃θ ∈ [0, 1] such that if we define xθ = x0(1− θ) + x0 · θ, we have:

f(x)− Px0
(x) = f (n+1)(xθ) ·

(x− x0)
n+1

(n+ 1)!

Sanity Check: if n = 0, then Px0
(x) = f(x0), then ∃xθ such that:

f(x)− f(x0) = f ′(xθ)
(x− x0)

1

which looks exactly like the mean value theorem. The general case isn’t that different than this.

Proof. Fix x0, and x1 ∈ R. We’re trying to find xθ such that f(x1)−Px0(x1) = f (n+1)(xθ)
(x1−x0)

n+1

(n+1)! .

Define M ∈ R such that f(x1)− Px0
(x1) = (x1 − x0) ·M . Let

g(x) = f(x)− Px+0(x)−M(x− x0)
n+1

Note that g(x0) = f(x0) − Px0(x0) = 0 and g(x1) is 0 by definition of M . At x0 we have perfect

approximation, and therefore g(k)(x0) = f (k)(x0)− P
(k)
x0 (x0) = 0 for 0 ≤ k ≤ n. We will iterate the

mean value theorem:

• Use g(x0) = 0, g(x1) = 0, so ∃a1 ∈ (x0, x1) such that g′(a1) = 0.

• Use g′(x0) = 0, g′(a1) = 0 to get a2 ∈ (x0, a1) such that g′′(a2) = 0.

• Continue this process until we get an+1 ∈ (x0, an) such that g(n+1)(an+1) = 0.

Therefore we have that:

0 = g(n+1)(an+1) = f (n+1)(an+1)− 0−M(n+ 1)!

Rearranging the equation from when we defined M , we realize that:

f(x1)− P (x1) = (x1 − x0)
n+1 f

(n+1)(an+1)

(n+ 1)!

We see that this is what we set out to prove, where an+1 is the xθ we’re looking for.
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1.4 Taylor’s Theorem, Differentiation, Integration

Let f : R → R ∈ C∞(R). Let x0 ∈ R, and let N be a positive integer. The N -th order Taylor
expansion of f , centered at x0, is the polynomial P (x) such that P (k)(x0) = f (k)(x0) for all natural
numbers k. Also, the degree of P is at most N . Concretely,

Px0
(x) =

n∑
k=0

f (k)(x0)
(x− x0)

k

k!

The remainder f(x)− P (x) = R(x) has the property that R(k)(x0) = 0 for all 0 ≤ k ≤ N .

We say a smooth function f : R → R is analytic at point x0 ∈ R if ∃R > 0 such that f(x) =∑∞
n=0 an(x− x0)

n for all |x− x0| < R. If f is analytic at x0, then we can obtain the coefficients of

the expansion from the derivative: an = f(n)(x0)
n! .

Remark: There are smooth functions f such that f(0) = 0, f ′(0) = 0, . . . , f (n)(0) = 0, but f(x) is
not identically 0. For example, the function defined as

f(x) =

{
0 x ≤ 0

e−
1
x x > 0

Proposition 5: example of non-analytic function

lim
x→0+

e−
1
x

xn
= 0

Proof. Let u = 1
x , in which case (*) is equivalent to:

lim
u→∞

e−u(
1
u

)n = lim
u→∞

une−u = lim
u→∞

n!

eu
= 0

where the last equality follows from repeatedly applying L’Hopital’s Rule. This is an example of a
smooth function that is not analytic at 0.

To determine whether f(x) = 1
1+x is analytic at x = 0 we need to study the Taylor expansion around

x = 0.We find that:

f (n)(x) =
(−1)...(−n)

(1 + x)n+1

and at x = 0, we get Taylor expansion:
∞∑

n=0

(−1)nxn

A necessary and sufficient condition for this to converge is |x| < 1. We know that this geometric
series converges when |x| < 1, or when x ∈ B1(0). 1 is the radius of convergence. In general,
you may ask how can I cook up an analytic function? The answer is that you just need to provide
a convergent power series. You just need to specify the coefficients.
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Theorem 7

Let
∑∞

n=0 an(x−x0)
n be a power series at x0. Then, we can define α = lim supn→∞ |an|

1
n ,

and let R = 1
α . Then,

• If |x− x0| < R, the series converges.

• If |x− x0| > R, the series diverges.

• If |x− x0| = R, then it depends.

• If α = 0, so R = ∞, then the series is always convergent.

As an example, consider ∑ 1

n2
xn

We have

α = lim
n→∞

sup

(
1

n2

)1/n

= 1

so R = 1.

• if |x| < R = 1 it converges

• if |x| > R = 1 it diverges

• if |x| = 1 it still converges in this case because
∑

n−2 = π2

6 < ∞. (situational)

Remark: Taylor expansion is just one way to approximate a function. The advantage is that it
accurately reproduces the derivatives around a point. For a period function, with period T , i.e.
f(x+ T ) = f(x), we can use Fourier series;

f(x) ≈
∞∑

n=0

an sin
(
2πn

x

T

)
+ bn cos

(
2πn

x

T

)
We can also use polynomial interpolation, where we want a polynomial P (x) such that P (xn) = f(xn)
for finitely many distinct xi ∈ R.

Theorem 8: Weierstrauss Approximation Theorem

Given a continuous function f on [0, 1], and given any ϵ > 0, there exists a polynomial P (x)
such that ∀x ∈ [0, 1], |f(x)− P (x)| < ϵ.

Remark: This theorem can work for any closed interval by rescaling.
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Chapter 2
Integration

2.1 Introduction to Riemann Integration

What is integration?
∫ 1

0
f(x) dx is the area under the graph f(x), accounting for the fact that if

f(x) is below the x axis, it’s area is counted as negative (signed area under the graph). One way
to count area is to cut the piece into more regular pieces. For example if we cut the figure into
squares we can count the number of squares strictly inside the figure and the number of squares on
the boundary. By making the square size smaller and smaller we can get a more accurate approxi-
mation of the area of the figure. That is the plan, but will the plan succeed? Subscribe to find out!

A fractal is a curve on R2 for which we can try to measure the length by straight line approximations
on the boundary, but where taking the limit as the length of each segment approximation fails to
converge (pictured below is the Koch fractal).

Riemann integral: Let f : [a, b] → R be a bounded (not necessarily continuous) function. Let P
be a partition of [a, b]:

P = {a = x0 ≤ x1 ≤ · · · ≤ xN = b}

Let ∆xi = xi − xi−1 be the length of the i-th segment. We can also define Mi = sup[xi−1,xi] f(x)
and mi = inf [xi−1,xi] f(x).

For a given partition P , define:

U(P, f) =

N∑
i=1

Mi ·∆xi

L(P, f) =

N∑
i=1

mi ·∆xi
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We say a partition Q refines P if ”as a set of cut points” Q ⊋ P .

Proposition 6

If Q refines P , then:
L(Q, f) ≥ L(P, f)

U(Q, f) ≤ U(P, f)

Proof. The proof is clear from the fact that ∆xi becomes smaller, but the sup cannot increase and
the inf cannot decrease.

Informally, the limit as P gets more refined:

L(f) := lim
P

L(P, f)

The expression P gets more and more refined is not that well defined. So instead we can take the
supremum over all possible partitions.∫

= L(f) = sup
P any partition

L(P, f)

Similarly, we can do the same for the U and the inf.∫
= U(f) = inf

P any partition
U(P, f)

We say f is Riemann integrable if
∫ b

a
f dx =

∫ b

a
f dx.

Theorem 9: Continuous Functions are Riemann integrable

If f : [a, b] → R is continuous (hence bounded and uniformly continuous since [a, b] compact),
then f is Riemann integrable

Proof. We want to show that ∀ϵ > 0, ∃ partition P such that:∫ b

a

fdx−
∫ b

a

fdx < ϵ

Let ϵ̃ = ϵ
b−a , and by unif. continuity, ∃δ > 0 such that |x − y| < δ =⇒ |f(x) − f(y)| < ϵ̃. Choose

any partition P such that ∆xi < δ (for example let N = ⌈ b−a
δ ⌉). Then Mi = sup[xi−1,xi] f(x) = f(si)

for some si ∈ [xi−1, xi]. Similarly, mi = inf [xi−1,xi] f(x) = f(ti) for some ti ∈ [xi−1, xi]. Therefore,
|Mi −mi| = |f(si)− f(ti)| < ϵ̃. Thus,

U(P, f)− L(P, f) =
∑

(Mi −mi)∆xi ≤
∑

ϵ̃∆xi

= ϵ̃
∑

∆xi = ϵ̃ · (b− a) = ϵ

12



Example 1: Consider f : [0, 1] → R bounded, given by

f(x) =

{
0 x = 0

sin
(
1
x

)
x ∈ (0, 1]

Proof. This function is integrable. ∀ϵ > 0, consider a partition of the form
[
0, ϵ

4

]
, and some other

partition of
[
ϵ
4 , 1
]
. Let P ′ be a partition of

[
ϵ
4 , 1
]
such that:

U
(
P ′, f,

[ ϵ
4
, 1
])

− L
(
P ′, f,

[ ϵ
4
, 1
])

<
ϵ

2

Then, P =
[
0, ϵ

4

]
∪ P ′. Then

U (P, f, [0, 1])− L (P, f, [0, 1]) ≤ (1− (−1)) ·
( ϵ
4

)
+

ϵ

2
≤ ϵ

Proposition 7

If f : [a, b] → R is a bounded function with finitely many discontinuities, then f is integrable.

Proof. Repeat the above argument for all (finitely many) discontinuities

Theorem 10: Bounded monotone functions are integrable

If f is a monotone function over [a, b], then f is integrable.

Proof. We recall that a monotone function can have at most countably many discontinuities. Re-
member how we prove that, if we have a discontinuity, there will be a gap in the range. But this
means that there is a rational number inside that gap, so therefore the number of gaps is less than
or equal to the number of rational numbers, which is countable. Also, for all discontinuities p, the
left and right limits exist at p.

Fix ϵ > 0. ∀n ∈ N, n > 0, consider an equipartition Pn with n segments such that each segment has
length b−a

n = δ. Then:

U(Pn, f)− L(Pn, f) =
∑

(Mi −mi) · δ

=

n∑
i=1

(f(xi)− f(xi−1)) · δ

= δ ·
n∑

i=1

(f(xi)− f(xi−1)

= δ · [f(b)− f(a)]

By making n large enough, we can make δ small enough that:

δ · [f(b)− f(a)] < ϵ

13



2.2 The Riemann-Stieltjes Integral

Now we can define the Riemann-Stieltjes integral, which accounts for density.

• •

For a rod of uniform density, the center of mass will be the midpoint. For this uniform rod, we find
that the center of mass will be : ∫ L

0
x dx∫ L

0
dx

=
1

2
L

Now consider a rod of non-uniform density, in which we have density ρ(x) at x. Then ρ(x)dx denotes
the mass of a small segment. We see that the center of mass is :∫ L

0
xρ(x) dx∫ L

0
ρ(x) dx

= M

Suppose we want our density function to be able to encode things like jumps and point discontinuities.
One general way to replace ρ(x)dx, is by dα(x), where α is the cumulative mass function. α(x) is
the the mass on the interval [a, x]:

α(x) =

∫ x

a

ρ(x) dx

We want this function to be monotone increasing, because we should have non-negative density, so
the more volume we include, the heavier our object should get. This means that α(x) is monotone
increasing, which by the previous theorem is integrable. For example:

α(x) =

{
0 0 ≤ x ≤ 1

2

3 1
2 ≤ x ≤ 1

in which case d(α(x)) = 3δ(x− 1
2 ) · dx.

Suppose we want to compute the center of mass of 2 points. We expect this to be:

x1m1 + x2m2

m1 +m2

We just generalize this to an interval using integration:∫ 1

0
x dα(x)∫ 1

0
dα(x)

Let α : [a, b] → R be monotone increasing. Let f : [a, b] → R be bounded. Let P be a partition of
[a, b] a = x0 ≤ x1 < · · · < xN = b, and let Ii = (xi−1, xi]. Also, define ∆α(Ii) = α(xi) − α(xi−1),
and recall Mi = supIi f,mi = infIi f as in the definition of the Riemann integral.

U(P, f, α) =
∑

Mi ·∆α(Ii)

L(P, f, α) =
∑

mi ·∆α(Ii)

If we let:
U(f, α) = inf

P
U(P, f, α)

L(f, α) = sup
P

L(P, f, α)

if U(f, α) = L(f, α), we say that f is Riemann integrable with respect to α.

14



Theorem 11: Density analog of Thm 9

If f is continuous and α is monotone, then
∫ b

a
f dα(x) exists.

Remark: if we have:

f(x) =

{
0 x ∈

[
0, 1

2

)
1 x ∈

[
1
2 , 1
]

and

α(x) =

{
0 x ∈

[
0, 1

2

)
1 x ∈

[
1
2 , 1
]

Then U(P, f, α) − L(P, f, α) = 1. Any partition with a bin containing the jump (i.e. there is a
segment with 1

2 in the interior), then the mass of the segment will be 1, so U − L = (1− 0) · 1 = 1.
Alternatively, what if we have 1

2 as a cut point of the partition, then U −L = 1 if 1/2 is in the lower
partition.

Theorem 12: Density analog of Thm 10

Suppose f is monotone, α is continuous and monotone. Then
∫ b

a
f dα(x) exists.

Proof. Since α is continous and monotone on [a, b], and for each n ∈ N, n > 0, we can let let
y0, y1, ..., yN be an equipartition of [α(a), α(b)]. Then choose corresponding xi in the pre-image of

yi under α. Then α(xi)− α(xi−1) = yi − yi−1 = α(b)−α(a)
n . Then:

U(P, f, α)− L(P, f, α) =
∑

[f(xi)− f(xi−1)] · δ

≤
∑
i

[f(xi)− f(xi−1)] · δ

= (f(b)− f(a)) · δ

and again we can make n arbitrarily large to make the whole quantity less than ϵ.

Example 2: If α(x) is smooth.

• [a, b] = [0, 1]

• α(x) = 2 + 3x

• f(x) = 1

Then ∫ 1

0

f(x) dα(x) = lim
P a partition

∑
f(xi)∆αi = α(1)− α(0) = 3

If α is a smooth function (at least differentiable, say α′(x) = ρ(x), then dα(x) = ρ(x)dx, and we can
just do a normal Riemann integral. If α has finitely many jumps, we can still do the integration.
We can deal with the jumps with some special treatment.

α(x) =


x x ∈ [0, 1]

1 + x x ∈ (1, 2]

2 + x x ∈ (2, 3]

15



∫ 3

0

1 dα(x) =

∫ 1−

0+
dα(x) +

∫ 2−

1+
dα(x) +

∫ 3−

2+
dα(x) +

∑
P are jumps of α

(α(P+)− α(P−))

= 1 + 1 + 1 + (1 + 1) = 5

Theorem 13

If f : [a, b] → R is bounded, and has finitely many discontinuities, and if α is continuous

when f is discontinuous, then
∫ b

a
f dα exists.

Remark: If α(x) = x, the usual Riemann integral, we show this by creating partitions around the
jumps/discontinuities of f .

Proof. Fix ϵ > 0. LetM = sup f(x). Let E = {c1, . . . , cm} be the points at which f is discontinuous.
The steps are given below:

1. Choose small enough intervals [uj , vj ] centered around cj , such that
∑

α(vj)− α(uj) < ϵ and
these intervals are disjoint. We can let vj , uj get arbitrarily close to cj and therefore shrink
the bound (since α is continuous)

2. Let K = [a, b]\
⋃m

j=1(uj , vj). This is still a compact set. There exists a partition P of K that’s
fine enough such that:

U(P, f, α)− L(P, f, α) < ϵ

Then, let P̃ = P ∪
⋃m

i=1[ui, vi]. We conclude

U(P̃ − L(P̃ ) < ϵ+

m∑
i=1

(M − (−M)) ·∆αi)

< ϵ+ 2mϵ = (1 + 2m)ϵ

We can make this arbitrarily small with ϵ, and therefore the integral exists.

Theorem 14: Rudin 6.11

Let f : [a, b] → R be integrable with respect to weight α, and assume the range f([a, b]) ⊆
[m,M ]. If ϕ : [m,M ] → R is continuous, then h(x) = ϕ(f(x)) is integrable with respect to
α(x)

Example 3:

• α(x) = x

• f(x) is some monotone function

• ϕ is some smooth function like exponential e|x|

Then
∫ b

a
f dx =

∫ b

a
e|f(x)| dx exists.

16



Proof. Fix ϵ > 0. Since ϕ is continuous on [m,M ], it is uniformly continuous (domain is compact),
so ∃δ such that if |y2 − y1| < δ then |ϕ(y2)− ϕ(y1)| < ϵ.

Since f is integrable, ∃P a partition of [a, b] such that U(P, f, α) − L(P, f, α) < δ2. For interval
Ii = [xi−1, xi], let Mi = supIi f and mi = infIi f . Also let

M∗
i = sup

x∈Ii

ϕ(f(x)) m∗
i = inf

x∈Ii
ϕ(f(x))

we say Ii is of short type if Mi −mi < δ. We claim that then

M∗
i −m∗

i < ϵ

M∗
i −m∗

i = supx1, x2 ∈ Ii|h(x1) − h(x2)|, because x1, x2 ∈ Ii, then f(x1), f(x2) ∈ [mi,Mi], which
has length < δ, so we use uniform continuity to verify our claim. Otherwise, Ii is of ”long” type,
where we write the indices into 2 sets A ⊔B where Ii is a short type iff i ∈ A. Then:

M∗
i −m∗

i ≤ 2 sup |h| = 2K

We just take the peak of the function K, and realize that the entire function is contained in [−K,K].
Then:

δ ·
∑
i∈B

≤
∑
i∈B

(Mi −mi) ·∆αi ≤ U(P, f, α)− L(P, f, α) ≤ d2

so we get that: ∑
i∈B

∆αi < δ

and thus

U(P, h, α)− L(P, h, α) =

n∑
i=1

(M∗
i −m∗

i ) ·∆αi =

n∑
i∈A

(M∗
i −m∗

i ) ·∆αi +

n∑
i∈B

(M∗
i −m∗

i ) ·∆αi

≤
n∑

i∈A

(M∗
i −m∗

i ) ·∆αi +
∑
i∈B

2K∆αi

≤ ϵ[α(b)− α(a)] + 2k · δ
we can use the same trick where we make δ super small, and use ϵ′ or something to make that small
too.

Theorem 15: Rudin 6.12

Informally,
∫
f dα is linear in f and α. Formally:

1. If f, g are integrable with respect to α, then:∫
c · f dα

exists for all constants c and is equal to c ·
∫
f dα, and:∫

f + g dα

also exists and is equal to
∫
f dα+

∫
g dα

2. If f is integrable with respect to α1, α2, then f is integrable with respect to cα1 for
positive c, and f is integrable with respect to α1 + α2

17



Theorem 16: Rudin 6.13

1. If f and g are integrable with respect to α then f · g is integrable.

2. If f is integrable, then |f | is integrable.

The latter follows from setting ϕ(y) = |y| and applying our result about composition with
continuous functions.

Recall our setup for integration. We have f : [a, b] → R bounded, α : [a, b] → R monotone
increasing, and P a partition of [a, b] into closed intervals Ii = [xi−1, xi], where ∆αi = α(xi) −
α(xi−1). We also defined Mi = supIi f,mi = infIi f , so that:

U(P, f, α) =

n∑
i=1

Mi ·∆αi

L(P, f, α) =

n∑
i=1

mi ·∆αi

We said that f is integrable if limP U(P, f, α)− L(P, f, α) = 0 as P gets more refined.

Theorem 17: Sampling Lemma

• ∀i = 1, . . . , n, pick si ∈ Ii, then:

L(P, f, α) ≤
∑

f(si)∆ · αi ≤ U(P, f, α)

• If U − L ≤ ϵ, then for any si, ti ∈ Ii:∑
|f(si)− f(ti)| ·∆αi ≤

∑
(Mi −mi) ·∆αi = U − L ≤ E

Last time, we said that if there’s a smooth positive density functionρ(x) such that α′(x) = ρ(x),∫
fρ(x) dx =

∫
f dα, so now we only require that we have integrable α.

If
∫
f dx exists, we say that f is Riemann integrable, and we say that f ∈ R, the set of Riemann

integrable functions. If
∫
f dα exists, then f ∈ R(α).

Theorem 18: Rudin 6.17

Suppose that f is bounded and α is increasing. Further suppose α′ is exists and is integrable.
Then:

1. We have
f ∈ R(α) ⇐⇒ fα′ ∈ R

2. We have

f ∈ R(α) =⇒
∫ b

a

f dα =

∫ b

a

fα′ dx

Recall that U(f, α) = limP U(P, f, α) =
∫ b

a
f dα and that L(f, α) = limP L(P, f, α) =

∫ b

a
f dα. The

18



idea is that we want to prove that: ∫ b

a

f dα =

∫ b

a

fα′ dx

∫ b

a

f dα =

∫ b

a

fα′ dx

Proof. We’re going to show that for any ϵ > 0, there’s a partition such that:

|U(P, f, α)− U(P, f, α′)| < ϵ

which holds for any refinement of partition P . Since α′ is integrable, there’s a partition P such that:

U(P, f, α′)− L(P, f, α′) < ϵ

By the mean value theorem, since we know that ∃ti ∈ Ii such that

∆αi = α(xi)− α(xi−1) = α′(ti)∆xi

and by the sampling lemma, ∀si ∈ Ii, we have:∑
|α′(si)− α′(ti)| ∆xi < ϵ

Thus: ∣∣∣∣∣∑
i

f(si) ∆αi − f(si)α(si)∆xi

∣∣∣∣∣ =
∣∣∣∣∣∑

i

f(si)α
′(ti)∆xi − f(si)α

′(si)∆xi

∣∣∣∣∣
for some sample point si ∈ Ii. By our boundedness assumption, we can let M = sup[a,b] |f |. Then
the entire quantity above is less than or equal to:∑

i

|f(si)||α′(ti)− α′(si)| ∆xi ≤ M
∑
i

|α′(ti)− α′(si)| ∆xi ≤ M · ϵ

for all si ∈ Ii. This implies that:

U(P, f, α) ≤ U(P, fα′) +Mϵ

where the new α is just uniform density as in the normal Riemann integral. Similarly,, we can use
the absoute value in the other direction to get that:

U(P, fα′) ≤ U(P, f, α) +Mϵ

we conclude that the limit of their difference is less than ϵ, and since ϵ is arbitrarily sall, we have
that the limit :

|U(P, fα′)− U(P, f, α)| = 0

The exact same argument applies to the lower bounds, so:

|L(P, fα′)− L(P, f, α)| = 0

and we’re done.

Theorem 19: Rudin 6.19 - Change of variables

Let α be increasing on [a, b], and f ∈ R(α). Let ϕ : [A,B] → [a, b] be a strictly increasing
function. Define g : [A,B] → R such that g(y) = f(ϕ(y)). Similarly define β(y) = α(ϕ(y)).
Then: ∫ b

a

f dα =

∫ B

A

g dβ
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2.3 The Fundamental Theorem of Calculus

For this section, we only consider the Riemann integral.

Theorem 20: 6.20 Fundamental Theorem of Calculus I

Let f ∈ R on [a, b]. For any a ≤ x ≤ b, define:

F (x) :=

∫ x

a

f(t) dt

Then:

1. F (x) is a continous function

2. if f(x) is continuous at a point x0 ∈ [a, b] then F (x) is differentiable at x0 and F ′(x0) =
f(x0)

Remark: Suppose that f has a jump discontinuity, so for example:

f(x) =

{
0 x ∈

[
0, 1

2

]
1 x ∈

(
1
2 , 1
]

then F will not be differentiable at x = 1
2 .

Proof. Let M = supa,b |f(x)|. Then for any a ≤ x < y ≤ b we have:

|F (y)− F (x)| =
∣∣∣∣∫ y

a

f(t) dt−
∫ x

a

f(t) dt

∣∣∣∣ = ∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣
≤
∫ y

x

|f(t)| dt ≤
∫ y

x

M dt ≤ M |y − x|

Thus F is Lipschitz continuous with constant M. This is like the definition of a Lipschitz
function. Lipschitz continuity =⇒ continuity.

Now suppose f is continuous at x0, then ∀ϵ > 0, ∃δ > 0 s.t.:

|x− x0| < δ =⇒ |f(x)− f(x0)| < ϵ

Then for any s, t ∈ [a, b], such that:

x0 − δ < s < x0 < t < x0 + δ

Then:
F (t)− F (s)

t− s
=

1

t− s

∫ t

s

f(u) du

We realize that we can write f(x0) =
1

t−s

∫ t

s
f(x0) du since f(x0) is just a constant.∣∣∣∣F (t)− F (s)

t− s
− f(x0)

∣∣∣∣ = ∣∣∣∣ 1

t− s

∫ t

s

∫ t

s

(f(u)− f(x0)) du

∣∣∣∣
≤ 1

t− s

∫ t

s

|f(u)− f(x0)| du ≤ 1

t− s

∫ t

s

ϵ du =
1

t− s
(t− s)ϵ = ϵ

Therefore limn→0
F (x+n)−F (x0)

n = f(x0) as desired.
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Theorem 21: Fundamental Theorem of Calculus II

Let F be a differentiable function on [a, b] with F ′(x) = f(x). If f(x) is integrable, then:∫ b

a

f(x) dx = F (b)− F (a)

Note that f might not always be integrable, we may consider the Volterra function as an
example.

Proof. Fix ϵ > 0. We have that ∃P a partition of [a, b] where U(P, f)− L(P, f) < ϵ and:

F (b)− F (a) =

n∑
i=1

F (xi)− F (xi−1)

=

n∑
1

F ′(si) ∆xi

=

n∑
1

f(si) ∆xi ∈ [L(P, f), U(P, f)]

Therefore |F (b)− F (a)−
∫ b

a
f dx| < U − L < ϵ, so the left hand side goes to 0.

The canonical example is integration by parts.∫ b

a

f dg =

∫ b

a

d(fg)− fdg

if we differentiate both sides using the fundamental theorem of calculus, we see that we get a
restatement of the chain rule. For a more rigorous treatment:

Theorem 22: Integration by Parts

Suppose f, g are differentiable and f ′, g′ are integrable functions. Then:∫ b

a

fg′ dx = [fg]ba −
∫ b

a

gf ′ dx

2.4 Integrability, Differentiability, and Uniform Convergence

Recall that a sequence of functions converges uniformly if:

sup
x∈[a,b]

|fn(x)− f(x)| = 0

Recall that if fn → f uniformly and {fn} are continuous then f is continuous. Further, if fn(x) are
integrable with respect to weight function α(x), what can we say about whether or not f ∈ R(α)?
Integrability is preserved under uniform convergence, but differentiability is not always.

Theorem 23

If fn → f uniformly, and fn ∈ R(α), then f ∈ R(α), given that fn, f : [a, b] → R and
α : [a, b] → R is monotone increasing.
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Proof. We’ll use the fact that for uniformly convergent functions, given ϵ > 0, we can find an N
such that:

n ≥ N =⇒ fn − ϵ < f < fn + ϵ

Therefore for any P partition, we have

L(P, fn − ϵ, α)− ϵ(α(b)− α(a)) ≤ L(P, f, α) ≤ U(P, f, α) ≤ U(P, fn + ϵ, α) + ϵ(α(b)− α(a))

We can control both sources of error, since we can arbitrarily refine the partition, and we can make
our function approximation be better (by making n larger). Fix an n > N , we may choose partition
P such that;

U(P, fn, α)− L(P, fn, α) ≤ ϵ(α(b)− α(a))

Thus
U(P, f, α)− L(P, f, α) ≤ U(P, fn, α)− L(P, fn, α) + 2ϵ(α(b)− α(a))

= 3ϵ(α(b)− α(a))

Therefore ∀ϵ > 0, there exists a partition P to make U(P, f, α)−L(P, f, α) < ϵ work. Hence f is in
R(α).

Corollary: Let fn(x) ∈ R(α) over [a, b] and assume that F (x) =
∑∞

n=1 fn(x) is a uniformly
convergent series, so the partial sums converge uniformly. Then:∫ b

a

F (x) dx =

∞∑
n=0

∫ b

a

fn(x) dx

Proof. Define the partial sum FN (x) =
∑N

n=1 fn(x). This is the finite sum of α−integrable sums so
it is α−integrable as well. Hence FN (x) ∈ R(α). By the previous theorem, since FN → F uniformly
and FN integrable, then F (x) ∈ R(α).

By our previous theorem, ∫ b

a

F (x) dx = lim
N→∞

∫ b

a

FN (x) dx

= lim
N→∞

∫ b

a

(
N∑

n=1

fn(x)

)
dx

= lim
N→∞

N∑
n=1

∫ b

a

fn(x) dx

=

∞∑
n=1

∫ b

a

fn(x) dx

Now we can consider uniform convergence with respect to differentiation.

Example: fn → 0, f ′
n exists and is continuous, but f ′

n doesn’t converge to 0:

fn(x) =
1

n
sin(n2x)

f ′
n = n cos(n2x)
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Theorem 24

Suppose fn is a sequence of differentiable functions such that the derivative converges uni-
formly:

f ′
n → g

and further, ∃x0 ∈ [a, b] such that fn(x0) → c. Then:

1. ∃f such that fn → f uniformly

2. f is differentiable and f ′(x) = g(x) = lim f ′
n(x)

Proof. Fix ϵ > 0. Choose N large enough such that:

1. ∀n,m > N we have |fn(x0)− fm(x0)| < ϵ
2

2. d∞ (f ′
n, f

′
m) < ϵ

2
1

b−a

We can apply the mean value theorem to fn − fm on interval [x, t]:

|fn(x)− fm(x)− fn(t) + fn(t)| = | = |f ′
n(s)− f ′

m(s)| · |t− x| ≤ ϵ

2

1

b− a
(b− a) ≤ ϵ

2

We have that ∀x ∈ [a, b]:

|fn(x)− fm(x)| ≤ |fn(x)− fm(x)− (fn(x0)− fm(x0))|+ |fn(x0)− fm(x0)|

≤ ϵ

2
+

ϵ

2
= ϵ

So since fn is uniformly Cauchy, it’s uniformly convergent. We still need to prove that the limit
function is differentiable. We can use the definition to show that we can always compute the
difference quotient everywhere in [a, b]. Fix a point x ∈ [a, b] and define;

ϕ(t) =
f(t)− f(x)

t− x

We want to show that limt→x ϕ(t) = g(x). We will define an approximation:

ϕn(t) =
fn(t)− fn(x)

t− x

and since limt→x ϕn(t) = f ′
n(x), and we have that limn→∞ ϕn(t) = ϕ(t), it suffices to show that

limt→x limn→∞ ϕn(t) = limn→∞ limt→x ϕn(t). This is true if ϕn converges to g uniformly.

Recall that:
|fn(x)− fm(x)− (fn(t)− fm(t))| ≤ ϵ

2(b− a)
· |t− x|

Divide both sides by |t− x| which implies that;

|ϕn(t)− ϕm(t)| ≤ ϵ

2(b− a)

so ϕn is uniformly Cauchy, so it’s uniformly convergent on the punctured interval [a, b]\x. Therefore
we conclude that the limits commute, and therefore:

lim
t→x

ϕ(t) = g(x)
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Example 1: ϕn(t) = tn for t ∈ (0, 1). Then limn→∞ ϕn(t) = 0, but for each fixed n, we have that
limt→1ϕn(t) = 1, so the limits will not commute since this sequence doesn’t uniformly converge.

Example 2:

limn→∞

(
1

n+ 1
+ ...+

1

3n

)
How do we use integration to solve this limit? Let f(x) = 1

1+x We have:

lim
n→∞

2n∑
k=1

1

n+ k
=

∫ 2

0

1

x
dx

this is because we let x = k
n .

Example 3: We can try and find;

lim
n→∞

n2

(
1

n3 + 1
+ ...

1

2n3

)
We realize:

n2

n3 + k
=

1

1 + k3

n3

1

n

This goes from k = 1 to k = n. Therefore this is the integral:∫ 1

0

1

1 + x3
dx

Exercise: Find:

lim
n→∞

 sin
(

π
n+1

)
1

+ · · ·+
sin
(

nπ
n+1

)
n


which is

lim
n→∞

n∑
k=1

1

k
sin

(
kπ

n+ 1

)
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