Ross 9.9

Given that $\left(s_{n}\right),\left(t_{n}\right)$ are sequences such that in the tail, $s_{n} \leq t_{n}$, we'd like to prove the following:
a. $\lim s_{n}=+\infty \Longrightarrow \lim t_{n}=+\infty$. Suppose for contradiction $\lim t_{n}$ is finite. Fix some $\epsilon>0$. Then $\exists N$ s.t. $\forall n>N$:

$$
t_{n}<t+\epsilon
$$

Since s_{n} does not converge, we know that for every $\epsilon^{\prime}>0$, there is an N^{\prime} such that $\forall n^{\prime}>N^{\prime}$:

$$
s_{n^{\prime}}>\epsilon
$$

Then let $\epsilon^{\prime}=t+\epsilon$, ad let $M=\max \left(N, N^{\prime}\right)$. Then we get that:

$$
s_{n}>t+\epsilon>t_{n}
$$

which is a contradiction. We could also (for contradiction) have that $\lim t_{n}=-\infty$, but in that case we have that $t_{n}<\epsilon$, and we let $\epsilon^{\prime}=\epsilon$ to again see that $s_{n}>t_{n}$, contradicting our earlier assumption.
b. $\lim t_{n}=-\infty \Longrightarrow \lim s_{n}=-\infty$. We can do this proof in essentially the same way. Suppose for contradiction $\lim s_{n}$ is finite. Fix some $\epsilon>0$. Then $\exists N$ s.t. $\forall n>N$:

$$
s_{n}>s-\epsilon
$$

Since t_{n} diverges to $-\infty$, we know that for every $\epsilon^{\prime}>0$, there is an N^{\prime} such that $\forall n^{\prime}>N^{\prime}$:

$$
t_{n^{\prime}}<\epsilon
$$

Then let $\epsilon^{\prime}=s-\epsilon$, ad let $M=\max \left(N, N^{\prime}\right)$. Then we get that:

$$
s_{n}>s-\epsilon>t_{n}
$$

which is a contradiction. We could also (for contradiction) have that $\lim s_{n}=+\infty$, but in that case we have that $s_{n}>\epsilon$, and we let $\epsilon^{\prime}=\epsilon$ to again see that $s_{n}>t_{n}$, contradicting our earlier assumption.
c. $\lim s_{n} \leq \lim t_{n}$. Suppose for contradiction $\lim s_{n}>\lim t_{n}$ (call these limits s, t respectively), and fix some $\epsilon>0$. There is N such that $\forall n>N$:

$$
\begin{aligned}
& s_{n}>s-\epsilon \\
& s_{n}>t-\epsilon
\end{aligned}
$$

now we let $\epsilon=t-t_{n}$

$$
s_{n}>t-\left(t-t_{n}\right)=t_{n}
$$

contradicting our original assumption.

Ross 9.15

We'd like to show that $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$. We can split this up into 3 cases. The case where $a=0, a>0, a<0$. If $a=0$, the result is trivial, as $\frac{a^{0}}{n!}=0$ for all n. Now let's consider the case where $a>0$. Then $2 a>a$, and for any $n>2 a$, we have that $\frac{a}{n} \leq \frac{a}{2 a}$. Since we can start the limit from any arbitrary point (we only care about the tail), we can see that if n starts at something larger than $2 a$:

$$
\lim _{n \rightarrow \infty} \frac{a^{n}}{n!} \leq \lim _{n \rightarrow \infty} \frac{a^{n}}{(2 a)^{n}}=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0
$$

We can use a very similar argument to see that if $a<0$, then $-2 a>a$, and for any $n>-2 a$, we have that $\frac{a}{n} \leq \frac{a}{-2 a}$, which means that (again starting at some $n>-2 a$):

$$
\lim _{n \rightarrow \infty} \frac{a^{n}}{n!} \leq \lim _{n \rightarrow \infty} \frac{a^{n}}{(-2 a)^{n}}=\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{2^{n}}=\lim _{n \rightarrow \infty}(-1)^{n} \lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0
$$

In all 3 cases, we can see that the limit is 0 .

Ross 10.7

Given a subset S such that $\sup S \notin S$, we'd like to show that there's a sequence $\left(s_{n}\right)$ in S such that $\lim s_{n}=\sup S$. Intuitively, we'd like to set the $s_{n}=\sup S-\frac{1}{n}$ or something, but that's not always possible because it's not guaranteed that $\sup S-\frac{1}{n}$ is going to be an element of S. Instead we let s_{n} be something chosen from the interval $\left(\sup S-\frac{1}{n}, \sup S\right)$, which we can do using the axiom of choice. We can show that the limit is $\sup S$ in the way that we normally would.

$$
\sup S-\frac{1}{n}-\sup S<s_{n}-\sup S<\sup S-\sup S
$$

We can do that by construction of s_{n} :

$$
-\frac{1}{n}<s_{n}-\sup S<0
$$

We can rearrange this to see that $s_{n}-\sup S<\frac{1}{n}$, which means that we for arbitrary $\epsilon>0$ we let N_{0} be the ceiling of $\frac{1}{\epsilon}$, and then we have that for any $\epsilon>0$, there is an N_{0} such that for all $n>N_{0}$: $s_{n}-\sup S \leq \epsilon$

Ross 10.8

We'd like to show that given an increasing sequence of positive numbers $\left(s_{n}\right)$, the arithmetic mean σ_{n} of the first n values of s is an increasing sequence. To show that a sequence is increasing, we basically have to show that $\sigma_{n+1} \geq \sigma_{n}$. Suppose for contradiction $\sigma_{n+1}<\sigma_{n}$. Then:

$$
\begin{gathered}
\frac{s_{1}+\ldots+s_{n+1}}{n+1}<\frac{s_{1}+\ldots+s_{n}}{n} \\
\Longrightarrow n\left(s_{1}+\ldots+s_{n}\right)+n s_{n+1}<n\left(s_{1}+\ldots+s_{n}\right)+\left(s_{1}+\ldots+s_{n}\right) \\
\Longrightarrow n s_{n+1}<s_{1}+\ldots+s_{n}
\end{gathered}
$$

However, since we said that $\left(s_{n}\right)$ was an increasing sequence, we know that $s_{n+1} \geq s_{i}$ for all $i \in 1,2, \ldots, n$, which means that $n s_{n+1}$ should be greater than or equal to $s_{1}+\ldots+s_{n}$. This contradiction implies that $\sigma_{n+1} \geq \sigma_{n}$, i.e. $\left(\sigma_{n}\right)$ is an increasing sequence.

Ross 10.9

a.

$$
\begin{gathered}
s_{2}=\frac{2}{3} 1^{2}=\frac{2}{3} \\
s_{3}=\frac{3}{4}\left(\frac{2}{3}\right)^{2}=\frac{1}{3} \\
s_{4}=\frac{4}{5}\left(\frac{1}{3}\right)^{2}=\frac{4}{45}
\end{gathered}
$$

b. Firstly, we can see that $\left(s_{n}\right)$ is bounded below by 0 , because $\frac{n}{n+1}>0$ for $n>0$, and of course $s_{n}^{2} \geq 0$ for all s_{n}. Secondly, note that $s_{2} \leq 1$, which means that for all $n \geq 2$, we have that $s_{n} \leq 1$. We can prove this by induction. Suppose $s_{n} \leq 1$, then we know that $\frac{n}{n+1} \leq 1$, and $s_{n}^{2} \leq 1$, which means that their product is also less than 1 , therefore $s_{n+1} \leq 1$. So we can see the $\left(s_{n}\right)$ is bounded above by 1 . Secondly, we claim that it's a decreasing sequence.

$$
s_{n+1}=\frac{n}{n+1} s_{n}^{2} \leq s_{n}^{2} \leq s_{n}
$$

where the last equality follows from the fact that since $s_{n} \leq 1, s_{n}^{2} \leq s_{n}$.
c. Now we'd like to show that the limit is 0 . We know that the sequence is bounded below by 0 , so we want to find a sequence $\left(a_{n}\right)$ such that $0 \leq s_{n} \leq a_{n}$ such that the limit of $\left(a_{n}\right)$ is 0 . For $n>2$, we can guess that $s_{n} \leq \frac{1}{n}$. We can look at s_{3} as a base case. Then suppose $s_{n} \leq \frac{1}{n}$:

$$
s_{n+1}=\frac{n}{n+1} s_{n}^{2} \leq s_{n}^{2} \leq \frac{1}{n^{2}} \leq \frac{1}{n+1}
$$

The last inequality just comes from the fact that certainly for $n \geq 3$, we have $n^{2}>n+1$. Since we know that $\lim \frac{1}{n}=0$, we can conclude that $\lim s_{n}=0$.

Ross 10.10

a.

$$
\begin{aligned}
& s_{2}=\frac{2}{3} \\
& s_{3}=\frac{5}{9} \\
& s_{4}=\frac{14}{27}
\end{aligned}
$$

b. $s_{1}>\frac{1}{2}$ by definition. We proceed with induction, so suppose that $s_{n}>\frac{1}{2}$

$$
s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)>\frac{1}{3}\left(\frac{1}{2}+1\right)=\frac{1}{2}
$$

as desired.
c. For the sake of contradiction assume that the sequence isn't decreasing $\left(s_{n+1}>s_{n}\right)$:

$$
\begin{gathered}
\frac{1}{3}\left(s_{n}+1\right)>s_{n} \\
\Longrightarrow \frac{s_{n}}{3}+\frac{1}{3}>s_{n} \Longrightarrow 2 s_{n}<1 \Longrightarrow s_{n}<\frac{1}{2}
\end{gathered}
$$

as desired.
d. The limit exists because the sequence is decreasing and bounded below ($\frac{1}{2}$). Let s denote the limit.

$$
s=\frac{1}{3}(s+1) \Longrightarrow s=\frac{1}{2}
$$

Given that $t_{1}=1$ and $t_{n+1}=\left(1-\frac{1}{4 n^{2}}\right) t_{n}$:
a. We'd like to show that the limit exists. Firstly, we can see that 0 is a lower bound for $\left(t_{n}\right)$. Inductively $t_{1}>0$, and if we suppose that $t_{n}>0$, then since $1-\frac{1}{4 n^{2}}>0$ for all positive integer n, then t_{n+1} must also be greater than 0 . Likewise, we can show that it's upper bounded by 1 . Inductively, $t_{1} \leq 1$, and if we suppose that $t_{n} \leq 1$, we have that

$$
t_{n+1} \leq\left(1-\frac{1}{4 n^{2}}\right) \leq 1
$$

because $4 n^{2}>1$ for positive integer n.

Next, we will show that the sequence is also decreasing. Suppose that $t_{n+1}>t_{n}$ for contradiction. Then we have that:

$$
\begin{gathered}
\left(1-\frac{1}{4 n^{2}}\right) t_{n}>t_{n} \\
\Longrightarrow\left(1-\frac{1}{4 n^{2}}\right)>1 \\
\Longrightarrow 4 n^{2}<1
\end{gathered}
$$

which is impossible since for positive integer n, we have that $4 n^{2}>1$. Since t_{n} is a bounded decreasing sequence, the limit exists.
b. We'd like to somehow guess the limit. We can rearrange our recurrence to get

$$
t_{n+1}=\frac{4 n^{2}-1}{4 n^{2}} t_{n}=\frac{(2 n+1)(2 n-1)}{4 n^{2}} t_{n}=\frac{(2 n+1)(2 n-1)(2 n-1)(2 n-3)}{4^{2} n^{2}(n-1)^{2}} t_{n-1}
$$

We can extrapolate this pattern to get:

$$
t_{n+1}=\frac{(2 n+1)(2 n-1)^{2} \ldots(3)^{2}(1)}{4^{n}(n!)^{2}}
$$

The numerator can be expressed as

$$
\begin{gathered}
\frac{(2 n+1)!(2 n-1)!}{2^{n} n!2^{n-1}(n-1)!}=\frac{(2 n+1)!(2 n-1)!}{2^{2 n-1} n!(n-1)!} \\
t_{n+1}=\frac{(2 n+1)!(2 n-1)!}{2^{4 n-1}(n!)^{3}(n-1)!}
\end{gathered}
$$

I'm not sure how to evaluate this limit, or whether it can be simplified further, but for what its worth:

$$
t_{6}=\frac{231231}{327680}
$$

so the limit might be $\frac{2}{3}$ or something

Squeeze Test

We're given that $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$ are sequences such that $a_{n} \leq b_{n} \leq c_{n}$. We'd like to show that $\lim a_{n}=\lim c_{n}=L \Longrightarrow \lim b_{n}=L$. We know that given any $\epsilon>0$, there exist M, N such that $\forall n>N: a_{n}>L-\epsilon$ and $\forall m>M: c_{m}<L+\epsilon$. Then for any $n>\max (M, N)$:

$$
\begin{gathered}
L-\epsilon<a_{n} \leq b_{n} \leq c_{n}<L+\epsilon \\
-\epsilon<b_{n}-L<\epsilon \\
\left|b_{n}-L\right|<\epsilon
\end{gathered}
$$

We conclude that $\lim b_{n}=L$

