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Ross 9.9

Given that (sn), (tn) are sequences such that in the tail, sn ≤ tn, we’d like to prove the following:

a. lim sn = +∞ =⇒ lim tn = +∞. Suppose for contradiction lim tn is finite. Fix some ϵ > 0.
Then ∃N s.t. ∀n > N :

tn < t+ ϵ

Since sn does not converge, we know that for every ϵ′ > 0, there is an N ′ such that ∀n′ > N ′:

sn′ > ϵ

Then let ϵ′ = t+ ϵ, ad let M = max(N,N ′). Then we get that:

sn > t+ ϵ > tn

which is a contradiction. We could also (for contradiction) have that lim tn = −∞, but in that
case we have that tn < ϵ, and we let ϵ′ = ϵ to again see that sn > tn, contradicting our earlier
assumption.

b. lim tn = −∞ =⇒ lim sn = −∞. We can do this proof in essentially the same way. Suppose for
contradiction lim sn is finite. Fix some ϵ > 0. Then ∃N s.t. ∀n > N :

sn > s− ϵ

Since tn diverges to −∞, we know that for every ϵ′ > 0, there is an N ′ such that ∀n′ > N ′:

tn′ < ϵ

Then let ϵ′ = s− ϵ, ad let M = max(N,N ′). Then we get that:

sn > s− ϵ > tn

which is a contradiction. We could also (for contradiction) have that lim sn = +∞, but in that
case we have that sn > ϵ, and we let ϵ′ = ϵ to again see that sn > tn, contradicting our earlier
assumption.

c. lim sn ≤ lim tn. Suppose for contradiction lim sn > lim tn (call these limits s, t respectively), and
fix some ϵ > 0. There is N such that ∀n > N :

sn > s− ϵ

sn > t− ϵ

now we let ϵ = t− tn
sn > t− (t− tn) = tn

contradicting our original assumption.
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Ross 9.15

We’d like to show that limn→∞
an

n! = 0. We can split this up into 3 cases. The case where

a = 0, a > 0, a < 0. If a = 0, the result is trivial, as a0

n! = 0 for all n. Now let’s consider the case
where a > 0. Then 2a > a, and for any n > 2a, we have that a

n ≤ a
2a . Since we can start the limit

from any arbitrary point (we only care about the tail), we can see that if n starts at something
larger than 2a:

lim
n→∞

an

n!
≤ lim

n→∞

an

(2a)n
= lim

n→∞

1

2n
= 0

We can use a very similar argument to see that if a < 0, then −2a > a, and for any n > −2a, we
have that a

n ≤ a
−2a , which means that (again starting at some n > −2a):

lim
n→∞

an

n!
≤ lim

n→∞

an

(−2a)n
= lim

n→∞

(−1)n

2n
= lim

n→∞
(−1)n lim

n→∞

1

2n
= 0

In all 3 cases, we can see that the limit is 0.
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Given a subset S such that supS /∈ S, we’d like to show that there’s a sequence (sn) in S such that
lim sn = supS. Intuitively, we’d like to set the sn = supS − 1

n or something, but that’s not always
possible because it’s not guaranteed that supS − 1

n is going to be an element of S. Instead we let
sn be something chosen from the interval (supS − 1

n , supS), which we can do using the axiom of
choice. We can show that the limit is supS in the way that we normally would.

supS − 1

n
− supS < sn − supS < supS − supS

We can do that by construction of sn:

− 1

n
< sn − supS < 0

We can rearrange this to see that sn − supS < 1
n , which means that we for arbitrary ϵ > 0 we let

N0 be the ceiling of 1
ϵ , and then we have that for any ϵ > 0, there is an N0 such that for all n > N0:

sn − supS ≤ ϵ
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We’d like to show that given an increasing sequence of positive numbers (sn), the arithmetic mean
σn of the first n values of s is an increasing sequence. To show that a sequence is increasing, we
basically have to show that σn+1 ≥ σn. Suppose for contradiction σn+1 < σn. Then:

s1 + ...+ sn+1

n+ 1
<

s1 + ...+ sn
n

=⇒ n(s1 + ...+ sn) + nsn+1 < n(s1 + ...+ sn) + (s1 + ...+ sn)

=⇒ nsn+1 < s1 + ...+ sn

However, since we said that (sn) was an increasing sequence, we know that sn+1 ≥ si for all
i ∈ 1, 2, ..., n, which means that nsn+1 should be greater than or equal to s1 + ... + sn. This
contradiction implies that σn+1 ≥ σn, i.e. (σn) is an increasing sequence.
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a.

s2 =
2

3
12 =

2

3

s3 =
3

4
(
2

3
)2 =

1

3

s4 =
4

5
(
1

3
)2 =

4

45

b. Firstly, we can see that (sn) is bounded below by 0, because n
n+1 > 0 for n > 0, and of course

s2n ≥ 0 for all sn. Secondly, note that s2 ≤ 1, which means that for all n ≥ 2, we have that
sn ≤ 1. We can prove this by induction. Suppose sn ≤ 1, then we know that n

n+1 ≤ 1, and

s2n ≤ 1, which means that their product is also less than 1, therefore sn+1 ≤ 1. So we can see
the (sn) is bounded above by 1. Secondly, we claim that it’s a decreasing sequence.

sn+1 =
n

n+ 1
s2n ≤ s2n ≤ sn

where the last equality follows from the fact that since sn ≤ 1, s2n ≤ sn.

c. Now we’d like to show that the limit is 0. We know that the sequence is bounded below by 0,
so we want to find a sequence (an) such that 0 ≤ sn ≤ an such that the limit of (an) is 0. For
n > 2, we can guess that sn ≤ 1

n . We can look at s3 as a base case. Then suppose sn ≤ 1
n :

sn+1 =
n

n+ 1
s2n ≤ s2n ≤ 1

n2
≤ 1

n+ 1

The last inequality just comes from the fact that certainly for n ≥ 3, we have n2 > n+1. Since
we know that lim 1

n = 0, we can conclude that lim sn = 0.
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a.

s2 =
2

3

s3 =
5

9

s4 =
14

27

b. s1 >
1
2 by definition. We proceed with induction, so suppose that sn > 1

2

sn+1 =
1

3
(sn + 1) >

1

3
(
1

2
+ 1) =

1

2

as desired.

c. For the sake of contradiction assume that the sequence isn’t decreasing (sn+1 > sn):

1

3
(sn + 1) > sn

=⇒ sn
3

+
1

3
> sn =⇒ 2sn < 1 =⇒ sn <

1

2

as desired.

d. The limit exists because the sequence is decreasing and bounded below ( 1
2). Let s denote the

limit.

s =
1

3
(s+ 1) =⇒ s =

1

2
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Given that t1 = 1 and tn+1 =
(
1− 1

4n2

)
tn:

a. We’d like to show that the limit exists. Firstly, we can see that 0 is a lower bound for (tn).
Inductively t1 > 0, and if we suppose that tn > 0, then since 1− 1

4n2 > 0 for all positive integer
n, then tn+1 must also be greater than 0. Likewise, we can show that it’s upper bounded by 1.
Inductively, t1 ≤ 1, and if we suppose that tn ≤ 1, we have that

tn+1 ≤
(
1− 1

4n2

)
≤ 1

because 4n2 > 1 for positive integer n.

Next, we will show that the sequence is also decreasing. Suppose that tn+1 > tn for contradiction.
Then we have that: (

1− 1

4n2

)
tn > tn

=⇒
(
1− 1

4n2

)
> 1

=⇒ 4n2 < 1

which is impossible since for positive integer n, we have that 4n2 > 1. Since tn is a bounded
decreasing sequence, the limit exists.

b. We’d like to somehow guess the limit. We can rearrange our recurrence to get

tn+1 =
4n2 − 1

4n2
tn =

(2n+ 1)(2n− 1)

4n2
tn =

(2n+ 1)(2n− 1)(2n− 1)(2n− 3)

42n2(n− 1)2
tn−1

We can extrapolate this pattern to get:

tn+1 =
(2n+ 1)(2n− 1)2...(3)2(1)

4n(n!)2

The numerator can be expressed as

(2n+ 1)!(2n− 1)!

2nn!2n−1(n− 1)!
=

(2n+ 1)!(2n− 1)!

22n−1n!(n− 1)!

tn+1 =
(2n+ 1)!(2n− 1)!

24n−1(n!)3(n− 1)!

I’m not sure how to evaluate this limit, or whether it can be simplified further, but for what its
worth:

t6 =
231231

327680

so the limit might be 2
3 or something
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Squeeze Test

We’re given that (an), (bn), (cn) are sequences such that an ≤ bn ≤ cn. We’d like to show that
lim an = lim cn = L =⇒ lim bn = L. We know that given any ϵ > 0, there exist M,N such that
∀n > N : an > L− ϵ and ∀m > M : cm < L+ ϵ. Then for any n > max(M,N):

L− ϵ < an ≤ bn ≤ cn < L+ ϵ

−ϵ < bn − L < ϵ

|bn − L| < ϵ

We conclude that lim bn = L


