Ross 12.10

We'd like to show that $\left(s_{n}\right)$ is bounded if and only if limsup $\left|s_{n}\right|<+\infty$. The first direction is kind of trivial; if $\left|s_{n}\right|<M$ for all n, then $\sup \left\{\left|s_{N}\right| \mid n \in \mathbb{N}\right\} \leq M$, which means that limsup $\left|s_{n}\right|$ is definitely less than $M<+\infty$.

In the other direction, we have that $\limsup \left|s_{n}\right|<+\infty$. Say that $\limsup \left|s_{n}\right|=r$, and then fix some $\epsilon>0$. We know that there's an N such that $\sup \left\{\mid s_{n} \| n>N\right\}<r+\epsilon$, which means that we can just let $M=\max \left\{\left|s_{1}\right|,\left|s_{2}\right|, \ldots,\left|s_{N}\right|, r+\epsilon\right\}$, and we know that for all $n, s_{n}<M$ by construction.

Ross 12.12

We'd like to show that $\liminf s_{n} \leq \liminf \sigma_{n} \leq \limsup \sigma_{n} \leq \limsup s_{n}$. The middle inequality is obvious, so we can just prove the third inequality, and the first one should be a mirrored proof. So lets say that we start with $M>N$, we'd like to show that

$$
\begin{gathered}
\sup \left\{\sigma_{n} \mid n>M\right\} \leq \frac{1}{M}\left(s_{1}+\ldots+s_{N}\right)+\sup \left\{s_{n} \mid n>N\right\} \\
\sup \left\{\left.\frac{s_{1}+\ldots+s_{n}}{n} \right\rvert\, n>M\right\}=\sup \left\{\left.\frac{s_{1}+\ldots+s_{N}}{n}+\frac{s_{N+1}+\ldots+s_{M}}{n} \right\rvert\, n>M\right\}
\end{gathered}
$$

Because $n>M$, we know that:

$$
\begin{gathered}
\frac{s_{1}+\ldots+s_{N}}{n}<\frac{s_{1}+\ldots+s_{N}}{M} \\
\sup \left\{\left.\frac{s_{1}+\ldots+s_{N}}{M}+\frac{s_{N+1}+\ldots+s_{M}}{n} \right\rvert\, n>M\right\}=\frac{s_{1}+\ldots+s_{N}}{M}+\sup \left\{\left.\frac{s_{N+1}+\ldots+s_{M}}{n} \right\rvert\, n>M\right\} \\
\leq \frac{s_{1}+\ldots+s_{N}}{M}+\sup \left\{s_{n} \mid n>N\right\}
\end{gathered}
$$

as desired. Since $N>M$, we can actually write this as:

$$
\leq \frac{s_{1}+\ldots+s_{N}}{M}+\sup \left\{s_{n} \mid n>M\right\}
$$

which gives us that the $\limsup \sigma_{n} \leq \limsup s_{n}$.

Ross 14.2

(a) Diverges, because we can bound the series by $\sum \frac{1}{n}$ and $\sum \frac{2}{n}$
(b) $\sum(-1)^{n}$ doesn't converge or diverge to $\pm \infty$ since it's bounded but not convergent
(c) $\sum \frac{3 n}{n^{3}}=\sum \frac{3}{n^{2}}=3 \sum \frac{1}{n^{2}}$ which converges.
(d) $\sum \frac{n^{3}}{3^{n}}$ converges since $\left|\frac{\frac{(n+1)^{3}}{3^{n+1}}}{\frac{n^{3}}{3^{n}}}\right|=\left|\frac{(n+1)^{3}}{3 n^{3}}\right|$, which is $\frac{1}{3}$ in the limit.
(e) This converges because n ! $<n^{2}(n-2)$!, and the numerator and denominator cancel to a convergent series.
(f) Converges because every term after 2 is less than $\frac{1}{2^{n}}$ which converges.
(g) Converges by ratio test, the limit should be $\frac{1}{2}$

Ross 14.10

We want to find a series that diverges by the root test, but where the ratio test gives us no information. Let

$$
\sum 3^{(-1)^{n}-n}
$$

The ratio test fails because ratios between consecutive terms change depending on the parity of the n terms vs the $n+1$ term

Rudin 3.6

a. We can look at the partial sums of this series. Each partial sum is a telescoping sum, which gives us that $\sum_{1}^{n} a_{k}=\sqrt{n+1}-1$, and since the limit of the partial sums determines the convergence of the series, we conclude that this series diverges.
b. We can multiply each term a_{n} by $\frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$, and we get that $a_{n}=\frac{1}{n(\sqrt{n+1}+\sqrt{n})} \leq \frac{1}{n^{2}}$, and since $\sum \frac{1}{n^{2}}$ converges $\sum a_{n}$ converges
c. We use the root test on this series, so the root is going to be $\left|a_{n}\right|^{\frac{1}{n}}=\left|n^{\frac{1}{n}}-1\right|$. We know that the first term is converging to 1 , which means that the entire term is converging to 0 , which means that the series converges by the root test.
d. z is complex, which means we can probably just use $|z|$. We'd like the terms to get smaller by the sanity test, so we at least need to have $|z|>1$. Then we can lower bound this by the geometric series $\sum\left(\frac{1}{2 z}\right)^{n}$, and upper bound it by $\sum\left(\frac{1}{z}\right)^{n}$, both of which converge if $|z|>1$.

Rudin 3.7

We know that if we have a convergent series $\sum b_{n}$ and a bounded series $\sum a_{n}$, then the product $\sum a_{n} b_{n}$ converges. So we're given that $\sum a_{n}$ is convergent, so $\sum \sqrt{a_{n}}$ is convergent, and $b_{n}=\frac{1}{n}$ can be bounded between 0 and 1 . Therefore, the product converges.

The other two Rudin problems were pretty difficult, and given the midterm this week I didn't get as much time as I'd like to complete them.

