1

Let $f_{n}(x)=\frac{n+\sin x}{2 n+\cos n^{2} x}$. We want to show that this converges uniformely on \mathbb{R}. We can lower bound and upper bound sin and cos by -1 and 1 respectively. We'll see that:

$$
\frac{n-1}{2 n+1} \leq f_{n}(x) \leq \frac{n+1}{2 n-1}
$$

Looking at this, we expect $f_{n}(x)$ to converge to $\frac{1}{2}$. Firstly, note that $-\frac{n-1}{2 n-1} \leq \frac{n-1}{2 n+1}$. To verify this, cross multiply both sides and we'll see that that inequality is equivalent to $n^{2} \geq n$ which is true. Therefore, we have that:

$$
\left|f_{n}(x)-\frac{1}{2}\right| \leq \frac{n+1}{2 n-1}-\frac{1}{2}=\frac{3}{4 n-2}
$$

Fix some $\epsilon>0$. We want $\frac{3}{4 N-2}<\epsilon$. We can just choose N such that $N>\frac{3+2 \epsilon}{4 \epsilon}$, and then we meet the uniform convergence criteria as desired.

2

We're given that $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$, and we want to show that it's continuous on $[-1,1]$ if $\sum_{n}\left|a_{n}\right|<\infty$. Given that $x \in[-1,1]$, we know that $-1 \leq x^{n} \leq 1$ for all n. Therefore, $\left|a_{n} x^{n}\right| \leq\left|a_{n}\right|$, which we know converges. Firstly, note that every polynomial is continuous, which means that every partial sum is continuous. By the Weierstrauss M test, the sum uniformly converges, and since f is a limit of uniformely convergent continuous functions, it is continuous.

3

We want to show that $f(x)=\sum_{n} x^{n}$ is continuous on $(-1,1)$ but convergence is not uniform. We'll use the hint to show that we have uniform convergence on $[-a, a]$ for $0<a<1$. Firstly, for $a \in(0,1),[-a, a] \subseteq(-1,1)$. Choose some arbitrary $p \in(-1,1)$. We know that there's some $a \in(0,1)$ such that $p \in[-a, a]$. We know that since $p \in[-a, a],|p| \leq|a|$, and therefore, $\left|p^{n}\right| \leq|a|^{n}$, and by the Weierstrauss M test this converges (it's a geometric series with ratio less than 1). So f uniformely converges on all intervals $[-a, a]$ for $a \in(0,1)$.

Now we want to show it doesn't converge uniformely on ($-1,1$). Firstly note that partial sums of f have closed form: $f_{n}(x)=\frac{x\left(1-x^{n}\right)}{1-x}$, and $f=\frac{x}{1-x}$ (using our formulas for geometric series, where since we are 1 -indexing the first term is x). For arbitrary n :

$$
f_{n}(x)-f(x)=x \frac{1-x^{n}-1}{1-x}=\frac{x^{n+1}}{1+x}
$$

If we fix some $\epsilon>0$, we can always make $\left|f_{n}(x)-f(x)\right|$ greater than ϵ by setting x very close to 1 (say within $\left(1-\epsilon^{n}, n\right)$).

