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1

We want to construct a smooth function f : R → R such that f(x) = 0 for x ≤ 0, f(x) = 1 for
x ≥ 1, and for x ∈ (0, 1), f(x) ∈ [0, 1]. Rudin gives:

f(x) =

{
0 x ≤ 0

e−
1
x x > 0

We know f(0) → 0 and f is infinitely differentiable at 0. Then we have that the function:

f(x)

f(x) + f(1− x)

Should be smooth since f is smooth, and when we evaluate it at the endpoints, we get 0 at 0
and 1 at 1. We can just let the other parts be piecewise defined, and since we know that f nicely
converges to 0, as x goes to 0, this function should be smooth at it’s endpoints too.

2

We can define:

f = c0x+
1

2
c1x

2 + ...+
1

n+ 1
cnx

n+1

We see that f(0) = 0 and by assumption f(1) = 0. By Rolle’s theorem, there is a point c ∈ [0, 1]
such that f ′(c) = 0. f ′ is actually the function we are looking for:

f ′ = c0 + ...+ cnx
n

so we have shown the existence of a c such that f ′(c) = 0

3

We have that f ′ is continous on [a, b] and ϵ > 0. Let g(x) = x. Then by the mean value theorem,
there is c ∈ [t, x] such that:

[f(t)− f(x)] = (t− x)f ′(c)

and thus we have that the difference quotient is f ′(c). We know that there is δ > 0 such that
|c− x| < δ, we have |f ′(c)− f ′(x)| < ϵ.

4

We define Q(t) = f(t)−f(β)
t−β . We will differentiate the expression:

Q(t)(t− β) = f(t)− f(β)

using the product rule on the LHS to get:

f (n−1)(t) = (n− 1)Q(n−2)) + (t− β)Q(n−1)

We plug this into our original expression for the Taylor expansion:

Pα(β) =
n−1∑
i=i

f (i)(α)

i!
(β − α)i + f(α)
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We plut in our expression for f (i) to get that:

Pα(β) =
n−1∑
i=i

iQ(i−1)) + (α− β)Q(i)

i!
(β − α)i + f(α)

=
n−1∑
i=i

Q(i−1)(α)

(i− 1)!
(β − α)i −

n−1∑
i=i

Q(i)(α)

i!
(β − α)i+1 + f(α)

This will telescope, and we get the first term of the first sum minus the last term of the second
sum:

P (β) = Q(α)(β − α) +
Q(n−1)(α)

(n− 1)!
(β − α)n + f(α)

If we plug in our expression for Q(α), we get what we want, that:

P (β) = f(β) +
Q(n−1)(α)

(n− 1)!
(β − α)n

5

a. If f ′(t) ̸= 1 for all t ∈ R, then f has at most 1 fixed point. Suppose f has 2 fixed points (a, b).
Then apply the mean value theorem with g(x) = x, so:

f(a)− f(b) = (a− b)f ′(c) =⇒ f ′(c) = 1

contradicting our assumption.

b. We want to show f(t) = t+(1+ et)−1 has no fixed point. Say it does, then t = t+(1+ et)−1, so
(1 + et)−1 = 0, which is impossible, as the numerator is nonzero (even though the whole thing
asymptotically approaches 0).

c. A fixed point is an intersection of the function with g(x) = x. If |f ′(x)| < 1, f has to intersect
with g, which means that a fixed point exists. We expect xn+1 to be close to f(xn+1) since we
are converging to the fixed point, so we want:

|f(xn+1)− xn+1| < |f(xn)− xn|

⇐⇒ |f(f(xn))− f(xn)| < |f(xn)− xn|

Suppose not:
|f(f(xn))− f(xn)| ≥ |f(xn)− xn|

We know there is c ∈ [xn, f(xn)] such that by mean value theorem, taking g(x) = x:

f(f(xn))− f(xn) = (f(xn)− xn)f
′(c)

But then:

f ′(c) =
f(f(xn))− f(xn)

f(xn)− xn
≥ 1

Which contradicts our assumption that f ′(t) < 1 for all t.

d. The process is just the zigzag path since xn+1 = f(xn), so we get pairs (x1, f(x1)) = (x1, x2),
and then (f(x1), f(f(x1)))) = (x2, x3) and so on.


