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1

We want to construct a smooth function f : R — R such that f(z) = 0 for < 0, f(z) = 1 for
x> 1, and for z € (0,1), f(x) € [0,1]. Rudin gives:

f(z) = {01 v=0

ez x>0
We know f(0) — 0 and f is infinitely differentiable at 0. Then we have that the function:
f(z)
fl@)+ f(1—2)

Should be smooth since f is smooth, and when we evaluate it at the endpoints, we get 0 at 0
and 1 at 1. We can just let the other parts be piecewise defined, and since we know that f nicely
converges to 0, as x goes to 0, this function should be smooth at it’s endpoints too.
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We can define:

1 1
f=cox+ 561332 + ...+ s 1cn ntl

We see that f(0) = 0 and by assumption f(1) = 0. By Rolle’s theorem, there is a point ¢ € [0, 1]
such that f/(c¢) = 0. f’ is actually the function we are looking for:

X

fl=co+ ... +cpa”

so we have shown the existence of a ¢ such that f/'(c) =0

3

We have that f’ is continous on [a,b] and € > 0. Let g(z) = . Then by the mean value theorem,
there is ¢ € [t, z] such that:

[f(t) = f(@)] = (t = 2)f'(c)
and thus we have that the difference quotient is f/(c¢). We know that there is 6 > 0 such that
|c — x| < 4, we have |f'(c) — f'(z)] <.

4

We define Q(t) = %é(ﬁ) We will differentiate the expression:
Q) —B) = f(t) — f(B)
using the product rule on the LHS to get:
frI() = (= 1)U + (t - ;MY

We plug this into our original expression for the Taylor expansion:

= fO(a)

Po(B) =) —

=1

(B —a)' + f(a)
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We plut in our expression for f() to get that:

=l n(i-1) _ (i)
Pa(ﬁ):ZZQ )+i(!a B)Q

=1

(i—-1) (’L )
Z Q Z Q a)z—l—l + f(Oé)

(B—a)' + fla)

This will telescope, and we get the first term of the first sum minus the last term of the second

sum: on 1)( )
(n—1)!

If we plug in our expression for Q(«), we get what we want, that:

Q" V(o)
(n—1)!

P(B) = Q) (8 —a) + (8 —a)" + f(e)

(6 —a)"

5

a. If f'(t) # 1 for all t € R, then f has at most 1 fixed point. Suppose f has 2 fixed points (a,b).
Then apply the mean value theorem with g(z) = x, so:

fla) = f(b) = (@—=b)f'(c) = f'(c)=1
contradicting our assumption.

b. We want to show f(t) =t + (1+¢')~! has no fixed point. Say it does, then t = ¢+ (1 +¢')~1, so
(1 + ')~ = 0, which is impossible, as the numerator is nonzero (even though the whole thing
asymptotically approaches 0).

c. A fixed point is an intersection of the function with g(z) = . If |f/(z)| < 1, f has to intersect
with g, which means that a fixed point exists. We expect x,41 to be close to f(z,41) since we
are converging to the fixed point, so we want:

[f(@ni1) = nga| < |f(zn) — 2

Suppose not:

We know there is ¢ € [z, f(zy)] such that by mean value theorem, taking g(z) = x:
F(f(zn) = flan) = (f(xn) = 2n) f(c)

But then:

/ . f(f(xn)) - f(xn)

Which contradicts our assumption that f'(¢) < 1 for all ¢.

1

d. The process is just the zigzag path since x,41 = f(zy), so we get pairs (z1, f(z1)) = (21, x2),
and then (f(z1), f(f(z1)))) = (x2,x3) and so on.



