1
We want to construct a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=0$ for $x \leq 0, f(x)=1$ for $x \geq 1$, and for $x \in(0,1), f(x) \in[0,1]$. Rudin gives:

$$
f(x)= \begin{cases}0 & x \leq 0 \\ e^{-\frac{1}{x}} & x>0\end{cases}
$$

We know $f(0) \rightarrow 0$ and f is infinitely differentiable at 0 . Then we have that the function:

$$
\frac{f(x)}{f(x)+f(1-x)}
$$

Should be smooth since f is smooth, and when we evaluate it at the endpoints, we get 0 at 0 and 1 at 1 . We can just let the other parts be piecewise defined, and since we know that f nicely converges to 0 , as x goes to 0 , this function should be smooth at it's endpoints too.

2
We can define:

$$
f=c_{0} x+\frac{1}{2} c_{1} x^{2}+\ldots+\frac{1}{n+1} c_{n} x^{n+1}
$$

We see that $f(0)=0$ and by assumption $f(1)=0$. By Rolle's theorem, there is a point $c \in[0,1]$ such that $f^{\prime}(c)=0 . f^{\prime}$ is actually the function we are looking for:

$$
f^{\prime}=c_{0}+\ldots+c_{n} x^{n}
$$

so we have shown the existence of a c such that $f^{\prime}(c)=0$

3

We have that f^{\prime} is continous on $[a, b]$ and $\epsilon>0$. Let $g(x)=x$. Then by the mean value theorem, there is $c \in[t, x]$ such that:

$$
[f(t)-f(x)]=(t-x) f^{\prime}(c)
$$

and thus we have that the difference quotient is $f^{\prime}(c)$. We know that there is $\delta>0$ such that $|c-x|<\delta$, we have $\left|f^{\prime}(c)-f^{\prime}(x)\right|<\epsilon$.

4

We define $Q(t)=\frac{f(t)-f(\beta)}{t-\beta}$. We will differentiate the expression:

$$
Q(t)(t-\beta)=f(t)-f(\beta)
$$

using the product rule on the LHS to get:

$$
\left.f^{(n-1)}(t)=(n-1) Q^{(n-2)}\right)+(t-\beta) Q^{(n-1)}
$$

We plug this into our original expression for the Taylor expansion:

$$
P_{\alpha}(\beta)=\sum_{i=i}^{n-1} \frac{f^{(i)}(\alpha)}{i!}(\beta-\alpha)^{i}+f(\alpha)
$$

We plut in our expression for $f^{(i)}$ to get that:

$$
\begin{aligned}
P_{\alpha}(\beta) & =\sum_{i=i}^{n-1} \frac{\left.i Q^{(i-1)}\right)+(\alpha-\beta) Q^{(i)}}{i!}(\beta-\alpha)^{i}+f(\alpha) \\
& =\sum_{i=i}^{n-1} \frac{Q^{(i-1)}(\alpha)}{i-1)!}(\beta-\alpha)^{i}-\sum_{i=i}^{n-1} \frac{Q^{(i)}(\alpha)}{i!}(\beta-\alpha)^{i+1}+f(\alpha)
\end{aligned}
$$

This will telescope, and we get the first term of the first sum minus the last term of the second sum:

$$
P(\beta)=Q(\alpha)(\beta-\alpha)+\frac{Q^{(n-1)}(\alpha)}{(n-1)!}(\beta-\alpha)^{n}+f(\alpha)
$$

If we plug in our expression for $Q(\alpha)$, we get what we want, that:

$$
P(\beta)=f(\beta)+\frac{Q^{(n-1)}(\alpha)}{(n-1)!}(\beta-\alpha)^{n}
$$

5

a. If $f^{\prime}(t) \neq 1$ for all $t \in \mathbb{R}$, then f has at most 1 fixed point. Suppose f has 2 fixed points (a, b). Then apply the mean value theorem with $g(x)=x$, so:

$$
f(a)-f(b)=(a-b) f^{\prime}(c) \Longrightarrow f^{\prime}(c)=1
$$

contradicting our assumption.
b. We want to show $f(t)=t+\left(1+e^{t}\right)^{-1}$ has no fixed point. Say it does, then $t=t+\left(1+e^{t}\right)^{-1}$, so $\left(1+e^{t}\right)^{-1}=0$, which is impossible, as the numerator is nonzero (even though the whole thing asymptotically approaches 0).
c. A fixed point is an intersection of the function with $g(x)=x$. If $\left|f^{\prime}(x)\right|<1, f$ has to intersect with g, which means that a fixed point exists. We expect x_{n+1} to be close to $f\left(x_{n+1}\right)$ since we are converging to the fixed point, so we want:

$$
\begin{aligned}
& \left|f\left(x_{n+1}\right)-x_{n+1}\right|<\left|f\left(x_{n}\right)-x_{n}\right| \\
\Longleftrightarrow & \left|f\left(f\left(x_{n}\right)\right)-f\left(x_{n}\right)\right|<\left|f\left(x_{n}\right)-x_{n}\right|
\end{aligned}
$$

Suppose not:

$$
\left|f\left(f\left(x_{n}\right)\right)-f\left(x_{n}\right)\right| \geq\left|f\left(x_{n}\right)-x_{n}\right|
$$

We know there is $c \in\left[x_{n}, f\left(x_{n}\right)\right]$ such that by mean value theorem, taking $g(x)=x$:

$$
f\left(f\left(x_{n}\right)\right)-f\left(x_{n}\right)=\left(f\left(x_{n}\right)-x_{n}\right) f^{\prime}(c)
$$

But then:

$$
f^{\prime}(c)=\frac{f\left(f\left(x_{n}\right)\right)-f\left(x_{n}\right)}{f\left(x_{n}\right)-x_{n}} \geq 1
$$

Which contradicts our assumption that $f^{\prime}(t)<1$ for all t.
d. The process is just the zigzag path since $x_{n+1}=f\left(x_{n}\right)$, so we get pairs $\left(x_{1}, f\left(x_{1}\right)\right)=\left(x_{1}, x_{2}\right)$, and then $\left.\left(f\left(x_{1}\right), f\left(f\left(x_{1}\right)\right)\right)\right)=\left(x_{2}, x_{3}\right)$ and so on.

